
Alkali CSD NVMe accelerators test
platform

Antmicro

2023-02-02

CONTENTS

1 Introduction 1

2 Repository reference 2

3 System architecture 3
3.1 FPGA design . 3
3.2 Memory map . 7
3.3 Host Software . 8
3.4 APU Software . 10
3.5 RPU Software . 11

4 NVMe commands and extensions 14
4.1 Basic NVMe operations . 14
4.2 NVMe Vendor extensions . 14
4.3 Custom NVMe commands . 15
4.4 Example command flow . 19

5 TensorFlow Lite model preparation 22
5.1 TensorFlow Lite models and runtime . 22
5.2 Test models used in development . 22
5.3 Compiling the TensorFlow Lite models with examples 23

6 VTA accelerator 24
6.1 Basic information . 24
6.2 Key parameters of the VTA accelerator . 24
6.3 VTA instructions . 26
6.4 The structure of the VTA accelerator . 26
6.5 VTA module synchronization mechanism . 30
6.6 VTA memory/addressing scheme . 31

7 Operations accelerated on VTA accelerator 33
7.1 TensorFlow Lite delegation scheme . 33
7.2 Adding a new operator to the delegate with 8-bit precision 34
7.3 ADD operator . 36
7.4 CONV2D operator . 37
7.5 Further work . 40
7.6 Resources . 40

8 Flashing and connecting the Basalt board 41
8.1 Flashing through NVMe interface . 41

i

8.2 Flashing via JTAG using Vivado . 41
8.3 Connecting the board to the PC . 43

ii

CHAPTER

ONE

INTRODUCTION

This document describes the Western Digital NVMe accelerators test platform. The main goal
of this project is to develop a proof of concept of an open source NVMe accelerator platform.
Initial work will be done using Xilinx ZCU106 platform and then it will be continued on the
Basalt platform provided by Western Digital.

The document is divided into the following chapters:

• Repository reference lists the repositories used for this project.

• System architecture contains information about the project’s architecture, such as FPGA
design, Host Software, APU Software and RPU Software

• NVMe commands and extensions describes in detail the extended NVMe command set de-
veloped as part of this project.

• TensorFlow Lite model preparation describes the preparation and usage of TensorFlow Lite
models.

• VTA accelerator describes the VTA accelerator usage details.

• Operations accelerated on VTA accelerator describes the implemented operations with the
VTA delegate.

• Flashing and connecting the Basalt board describes how to flash firmware to QSPI using
NVMe commands.

1

CHAPTER

TWO

REPOSITORY REFERENCE

Multiple repositories are used to store this project. This short overview aims to clarify purpose
of each repository:

• alkali-csd-projects is a core repository for building hardware and software for Western
Digital NVMe accelerator test platform.

• alkali-csd-hw contains FPGA design sources for the Alkali project, used for generating
bitstream for Western Digital NVMe accelerator test platform.

• alkali-csd-fw contains drivers, Linux (based on Buildroot) for APU and Zephyr application
for RPU, as well as delegate software and test scripts and software for the accelerator.

2

https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-hw
https://github.com/antmicro/alkali-csd-fw

CHAPTER

THREE

SYSTEM ARCHITECTURE

This chapter provides information about the architecture of the project.

3.1 FPGA design

This chapter describes the FPGA design that will be used on the target platform. It will utilize
Zynq US+ MPSoC’s PCIe hard block and additional supporting logic to handle NVMe physical
layer and expose the NVMe configuration registers and DMAs to the RPU.

A diagram that presents the connections between various elements of the design is shown be-
low:

There are four major parts that can be distinguished:

• PCIe core, which will handle the basic PCIe protocol and will provide:

– Host access to NVMe control registers using BAR space

– Access to Host memory for PCIe DMA.

– Support for generating Host interrupts.

• The RPU core, NVMe control reigsters and PCIe DMA that will be responsible for handling
the base NVMe protocol:

– RPU will implement NVMe handling logic.

– NVMe control registers will provide register space required by the NVMe specification
and will generate required interrupts, e.g. on writes to Doorbell registers).

– PCIe DMA will be responsible for transferring data to and from the Host memory.

• The APU core and PS IPI core that will be responsible for handling custom NVMe com-
mands:

– The IPI core will be used to communicate between RPU and APU.

– APU will implement logic that handles custom NVMe commands.

• Shared PS DDR memory will be used by both APU and RPU cores and will be used as
buffer before transferring NVMe data to/from the Host.

3

Alkali CSD NVMe accelerators test platform 4

3.1.1 Building the design

Instructions for building the design (and the whole project) are present in the alkali-csd-projects
README and alkali-csd-hw README.

Note: Building the design will require Vivado 2019.2 to be installed on the development PC.

3.1.2 NVMe register module

The NVMe register module is an IP core written in Chisel that implements Controller Registers
described in the NVMe Specification.

The register map follows the register layout from the specification and by default contains 5
pairs of doorbell registers.

On top of implementing basic Controller Registers, this module contains additional logic that is
used by the firmware running on the RPU for:

• Generating RPU interrupts on Host writes

On each Host write, register address is saved to Host Write Address FIFO which
can later be accessed by the RPU to see which registers have been written and
require action.

• Generating Host interrupts

RPU can trigger one of the 32 MSI interrupts by writing to a control register
with correct bits set, e.g. writing a value with bit 31 set sends interrupt 31.

To be able to use those additional features, the core contains three additional registers:

• Interrupt Status Register - by default located at 0x1028 which returns 1 when there is at
least one entry in Host Write Address FIFO.

• Interrupt Data Register - located at 0x102c returns oldest entry from Host Write Address
FIFO when read.

• Host Interrupt Register - located at 0x1030 triggers Host interrupt when written.

Generating NVMe IP

NVMe IP is written in Chisel which means that synthesizable Verilog must be first generated
from sources. The sources for generating NVMe IP is present in alkali-csd-hw/tree/main/chisel.

It is built within alkali-csd-hw build flow, described in its README.

To just generate the NVMe IP, the following dependencies are required:

• Scala (2.13.0)

• SBT

• Java

Alkali CSD NVMe accelerators test platform 5

https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-hw
https://github.com/antmicro/alkali-csd-hw/tree/main/chisel
https://github.com/antmicro/alkali-csd-hw

Note: A Dockerfile for building HW artifacts is a recommended environment for generating
the NVMe IP.

Once the dependencies are present, run:

git clone https://github.com/antmicro/alkali-csd-hw.git
cd chisel
make verilog

Updating register definitions

You can update the register definitions using nvme-registers-generator.

Those generator scripts take the NVMe Specification .pdf file as an input and based on that
generate register definitions that can be used in Chisel.

For details on generating register definitions check the nvme-registers-generator README file
in the repository.

Adding new registers

NVMe IP can be expanded with additional registers, either unimplemented optional ones or
vendor specific.

To add a new register, you can use the following steps:

1. Check if your register layout is defined in RegisterDefs.scala (this only applies if you
want do add an unimplemented register). Take a look into CSRRegMap.scala if your reg-
ister was already defined - it might be already present as a simple StorageRegister.

2. Add new register layout definition to CSR.scala if needed.

IRQHOST can be used as an example:

class IRQHOST extends RegisterDef {
val REQ = UInt(32.W)

}

3. Instantiate new register as a module in CSRFile.scala, make all needed connections and
add it to regMap.

IRQHOST can be used as an example:

val irqHost = Module(new AutoClearingRegister(new IRQHOST, dataWidth))

println(f"adding Host interrupt register at 0x${irqHostBase}%x")
regMap(irqHostBase) = irqHost

io.irqHost := irqHost.fields.REQ

Alkali CSD NVMe accelerators test platform 6

https://github.com/antmicro/alkali-csd-hw/blob/main/hw.dockerfile
https://github.com/antmicro/nvme-registers-generator
https://github.com/antmicro/nvme-registers-generator

3.1.3 VTA module

The VTA is an IP core written in HLS that is used by TFLite to accelerate certain operations. You
can find more information about using it in VTA accelerator.

To build the VTA and whole HW design, follow the README in alkali-csd-hw.

3.1.4 Built artifacts

The ready-to-use binaries for the hardware are available under alkali-csd-hw releases.

3.2 Memory map

Multiple memory areas are used in the system, this includes both register areas for IP cores and
shared memory:

Base Size Name
0x6000_0000 128 MiB RPU FW area
0x6800_0000 384 MiB NVMe ramdisk
0xA000_0000 64 KiB PCIe DMA IP
0xA001_0000 64 KiB NVMe IP
0xB000_0000 4 KiB VTA Fetch IP
0xB000_1000 4 KiB VTA Load IP
0xB000_2000 4 KiB VTA Compute IP
0xB000_3000 4 KiB VTA Store IP

3.2.1 PCIe and NVMe Cores

Location of PCIe and NVMe cores in memory map is set in Vivado design located in alkali-
csd-hw/tree/main/vivado. After making changes to their addresses you need to adjust
nvme.overlay for RPU firmware to contain correct base addresses.

3.2.2 VTA Cores

Location of VTA cores in memory map is set in Vivado design located in alkali-csd-
hw/tree/main/vivado. After making changes to their addresses you need to adjust
vta_params.hpp file used by the apu-app to contain correct base addresses.

Alkali CSD NVMe accelerators test platform 7

https://github.com/antmicro/alkali-csd-hw/tree/main
https://github.com/antmicro/alkali-csd-hw/releases
https://github.com/antmicro/alkali-csd-hw/tree/main/vivado
https://github.com/antmicro/alkali-csd-hw/tree/main/vivado
https://github.com/antmicro/alkali-csd-fw/blob/main/rpu-app/nvme.overlay
https://github.com/antmicro/alkali-csd-hw/tree/main/vivado
https://github.com/antmicro/alkali-csd-hw/tree/main/vivado
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/vta/vta_params.hpp

3.2.3 RPU-APU shared memory

The main memory is shared between Linux running on the APU and Zephyr RTOS app running
on the RPU. To ensure that the two don’t interfere with each other a memory range dedicated
to the RPU needs to be defined. It can then be used in Linux to reserve that part of the RAM
and in Zephyr to limit size of the application and its buffers. In both cases this is defined via the
devicetree.

For RPU it is defined in nvme.overlay as sram0 which represents area for the firmware. In APU
case it is declared in:

• an300 - zynqmp-an300-nvme.dts added in alkali-csd-fw/blob/main/br2-
external/common/patches/linux/0012-dts-add-an300-support.patch

• zcu106 - zynqmp-zcu106-nvme.dts added in lkali-csd-fw/blob/main/br2-
external/common/patches/linux/0003-dts-add-separate-devicetree-for-NVMe-
ZCU106.patch

as reserved-memory.

3.2.4 Ramdisk area

Ramdisk is also located in the main memory and is shared between Linux on the APU and
Zephyr on the RPU. For RPU it is defined in nvme.overlay as sram1. In APU case it is de-
clared in zynqmp-basalt-nvme.dts as part of reserved-memory and you need to adjust alkali-
csd-fw/blob/main/apu-app/src/lba.h in apu-app when changing ramdisk location in Zephyr.
To access a particular page you need to first calculate it’s offset with (lba * RAMDISK_PAGE) +
RAMDISK_BASE and then either use that address directly (in case of RPU) or MMAP it (on APU).

Note: Accessing ramdisk area from the BPF code is achieved with help of Use local storage
as accelerator input and Use local storage as accelerator output commands. Those
commands take LBA value to calculate correct offset, MMAP it and then pass it as a pointer to
your main BPF function.

3.3 Host Software

This chapter describes the software that will be used on the host PC. The host software will
communicate with the target platform using the NVMe interface.

It is located in alkali-csd-projects/tree/main/host-app.

Alkali CSD NVMe accelerators test platform 8

https://github.com/antmicro/alkali-csd-fw/blob/main/rpu-app/nvme.overlay
https://github.com/antmicro/alkali-csd-fw/blob/main/br2-external/common/patches/linux/0012-dts-add-an300-support.patch
https://github.com/antmicro/alkali-csd-fw/blob/main/br2-external/common/patches/linux/0012-dts-add-an300-support.patch
https://github.com/antmicro/lkali-csd-fw/blob/main/br2-external/common/patches/linux/0003-dts-add-separate-devicetree-for-NVMe-ZCU106.patch
https://github.com/antmicro/lkali-csd-fw/blob/main/br2-external/common/patches/linux/0003-dts-add-separate-devicetree-for-NVMe-ZCU106.patch
https://github.com/antmicro/lkali-csd-fw/blob/main/br2-external/common/patches/linux/0003-dts-add-separate-devicetree-for-NVMe-ZCU106.patch
https://github.com/antmicro/alkali-csd-fw/blob/main/rpu-app/nvme.overlay
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/lba.h
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/lba.h
https://github.com/antmicro/alkali-csd-projects/tree/main/host-app

3.3.1 Building the app

The host application is a simple C program that uses reads, writes and ioctls to communicate
with the accelerator. To build it, run:

git clone https://github.com/antmicro/alkali-csd-projects.git
cd alkali-csd-projects
make host-app

To build the host application along with additional files needed to run an example, run:

EXAMPLE=add make example/build

For more details check Running examples section of alkali-csd-projects README.

3.3.2 Using the app

The easiest way to use the application is to utilize the wrapper script which is located in the
alkali-csd-projects/tree/main/host-app directory:

cd host-app
./run.sh <path to NVMe device> <path to BPF source file> <input file> <output␣
→˓file>

The example of ADD operation can be executed with make in the root alkali-csd-projects:

EXAMPLE=add NVME_DEVICE=/dev/<nvmedevice> make example/load

Where:

• /dev/<nvmedevice> is the path to the NVMe accelerator,

• EXAMPLE is the example available under alkali-csd-
projects/tree/main/examples/tflite_vta/add

• example/load is a target building the example and running the run.sh script to send data
to process to the accelerator.

The results will be stored in build/examples/add/output.bin.

The program that is running in the accelerator is alkali-csd-
projects/blob/main/examples/tflite_vta/add/bpf.c. It is a simple C file that contains the
BPF program that will be built using clang.

It runs a sample alkali-csd-projects/blob/main/examples/tflite_vta/add/model.tflite
TFLite model on VTA accelerator on input specified in the alkali-csd-
projects/blob/main/examples/tflite_vta/add/input-vector.bin.

Alkali CSD NVMe accelerators test platform 9

https://github.com/antmicro/alkali-csd-projects#running-examples
https://github.com/antmicro/alkali-csd-projects/tree/main/host-app
https://github.com/antmicro/alkali-csd-projects/tree/main/examples/tflite_vta/add
https://github.com/antmicro/alkali-csd-projects/tree/main/examples/tflite_vta/add
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/bpf.c
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/bpf.c
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/model.tflite
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/input-vector.bin
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/input-vector.bin

3.4 APU Software

This chapter describes the software that will be running on the APU (A53 cores) part of the Zynq
US+ MPSoC. The APU software is responsible for processing the custom NVMe commands.

The firmware is available under alkali-csd-fw.

3.4.1 Building the APU software

To build the system and necessary software, follow alkali-csd-fw README.

3.4.2 APU base system

Linux Kernel linux-xlnx is used as the operating system for the APU. Buildroot is used to build
all dependencies and utilities for the APU and creates rootfs.

The rootfs contains basic set of system utilities, APU and RPU applications.

3.4.3 uBPF Virtual Machine

uBPF Virtual Machine a user space software allowing execution of a BPF programs. the uBPF
library is integrated with the APU application and is used to execute BPF payloads sent from
the host. The capabilities of BPF programs can be easily extended by adding external func-
tions that can be called from the BPF binary. Such functions are implemented in alkali-csd-
fw/tree/main/apu-app/src/vm.

Currently, the BPF programs allow to delegate inference of TFLite models to the VTA delegate.

The example of such program is ADD runner in alkali-csd-projects project.

3.4.4 Userspace custom NVMe command handler

Userspace application is used to handle custom Accelerator-related NVMe commands. Com-
munication with firmware running on the RPU is achieved by using rpmsg. All vendor specific
commands detected by the firmware are passed through to this application.

The application is available in alkali-csd-fw/tree/main/apu-app.

Adding support for new NVMe commands

Adding support for additional commands is fairly simple. Commands are dispatched
by handle_adm_cmd and handle_io_cmd functions located in alkali-csd-fw/blob/main/apu-
app/src/cmd.cpp. To handle another command, simply expand the switch responsible for
calling handlers by calling your new handler and then send_ack with proper ACK type
(PAYLOAD_ACK_DATA when command returns data, PAYLOAD_ACK otherwise). Buffer with the com-
mand will be provided using recv and mmap_buf represents buffer for data transferred to or from
host.

Alkali CSD NVMe accelerators test platform 10

https://github.com/antmicro/alkali-csd-fw
https://github.com/antmicro/alkali-csd-fw/tree/main
https://github.com/xilinx/linux-xlnx
https://buildroot.org/
https://github.com/antmicro/ubpf/tree/61725ce189f65f8e9cf10985d5932dac9aa3b861
https://github.com/antmicro/alkali-csd-fw/tree/main/apu-app/src/vm
https://github.com/antmicro/alkali-csd-fw/tree/main/apu-app/src/vm
https://github.com/antmicro/alkali-csd-projects/blob/main/examples/tflite_vta/add/bpf.c
https://www.kernel.org/doc/Documentation/rpmsg.txt
https://github.com/antmicro/alkali-csd-fw/tree/main/apu-app
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/cmd.cpp
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/cmd.cpp

3.5 RPU Software

This chapter describes the software that will be running on the RPU (R5 cores) part of the Zynq
US+ MPSoC. The RPU software will be responsible for handling the functionality required by
the NVMe standard including regular read/write transactions.

3.5.1 Operating system

The RPU software uses Zephyr RTOS as the operating system.

3.5.2 NVMe firmware overview

The NVMe app runs from a reserved part of the APU DDR memory. The exact location of this
area is specified in RPU-APU shared memory. This space is used for the app itself as well as for
various buffers needed to process the NVMe commands. The app also uses a small chunk (60B)
of memory at 0x0 to store reset and exception vectors, but that memory range is mapped into
the TCM memory.

The debug output from RPU is provided on serial port 0.

The app contains custom drivers for the two peripherals implemented in the PL:

• Verilog-PCIe DMA core

• Custom NVMe register module, described in NVMe register module

Both of these peripherals generate interrupts when RPU attention is needed. The NVMe register
module generates an interrupt for each Host register write, and the DMA generates interrupts
after finishing a transfer.

At the moment the app supports a minimal set of Admin commands sent by the NVMe Linux
driver:

• Obtaining Identify Controller/Namespace structure with Identify

• Obtaining SMART data structure using Get Log Page

• Manipulating I/O Submission/Completion Queues with Create/Delete I/O Completion/
Submission Queue

• Configuring the amount of queues using Set Features

I/O commands are also supported but for the moment support is minimal - all commands are
marked as successful in theirs Completions.

This level of supported commands allows the drive to successfully register in the system and
nvme-cli can be used to perform basic operations, e.g. identifying the drive, dumping SMART
data. More details on that can be found in Basic NVMe operations.

Alkali CSD NVMe accelerators test platform 11

https://github.com/zephyrproject-rtos/zephyr
https://github.com/linux-nvme/nvme-cli

3.5.3 Building and running NVMe firmware

For building instructions follow alkali-csd-fw README.

Note: It is recommended to build the whole project by following alkali-csd-projects README.

3.5.4 Adding support for new NVMe commands

Adding support for additional commands is fairly simple. Commands are dispatched by
handle_adm and handle_io functions located in alkali-csd-fw/blob/main/rpu-app/src/cmd.c.
To handle a new one you simply need to add another entry in the switch block which calls
handler for your command. For example, this is how a handler for Write command is called:

case NVME_IO_CMD_WRITE:
nvme_cmd_io_write(priv);
break;

Note: Commands can be also passed to APU for processing which is the case for FW update
commands and vendor commands. You can get more information about handling them on the
APU side in Adding support for new NVMe commands.

Once in handler, you will have access to a buffer with your command provided via priv variable.
You can use that to retrieve all needed command fields just like in this example:

typedef struct cmd_cdw10 {
uint32_t fid : 8;
uint32_t rsvd : 23;
uint32_t sv : 1;

} cmd_cdw10_t;

typedef struct cmd_cdw14 {
uint32_t uuid_idx : 7;
uint32_t rsvd : 25;

} cmd_cdw14_t;

typedef struct cmd_sq {
nvme_sq_entry_base_t base;
cmd_cdw10_t cdw10;
uint32_t cdw[3];
cmd_cdw14_t cdw14;

} cmd_sq_t;

void nvme_cmd_adm_set_features(nvme_cmd_priv_t *priv)
{

cmd_sq_t *cmd = (cmd_sq_t*)priv->sq_buf;

switch(cmd->cdw10.fid) {

(continues on next page)

Alkali CSD NVMe accelerators test platform 12

https://github.com/antmicro/alkali-csd-fw
https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-fw/blob/main/rpu-app/src/cmd.c

(continued from previous page)

case FID_NUMBER_OF_QUEUES:
number_of_queues(priv);
break;

default:
printk("Invalid Set Features FID value! (%d)\n", cmd->

→˓cdw10.fid);
}

nvme_cmd_return(priv);
}

This snippet also shows another important point - all handlers must include nvme_cmd_return
or nvme_cmd_return_data. Without that no NVMe response will be sent and the command will
timeout.

Alkali CSD NVMe accelerators test platform 13

CHAPTER

FOUR

NVME COMMANDS AND EXTENSIONS

This chapter discusses a proposal of the NVMe protocol with vendor-specific commands. Custom
commands are extending both Admin and I/O commands sets. All the additional commands
are encoded in the vendor-specific commands address space.

4.1 Basic NVMe operations

To perform basic NVMe operations once the device gets probed successfully, you can use nvme-
cli. This tool allows you to send various commands to NVMe devices.

Currently supported commands are:

• list

• list-subsys

• id-ctrl

• id-ns

• list-ns

• smart-log

• set-feature

• read

• write

• fw-download

• fw-commit

4.2 NVMe Vendor extensions

In order to use the accelerator you need to be able to control it over NVMe interface. The
control functionality can be implemented with additional, vendor-specific commands. This way
the accelerator device will be compatible with generic NVMe software. Custom software will
be required to use the additional accelerator functionalities. Some of the commands defined in
the NVMe standard support vendor extensions which can be used to implement basic features,
e.g. retrieving accelerator logs.

14

https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli

4.2.1 Get Log Page (Log Page Identifier 0xC0)

The get log page command returns a data buffer containing the log page for the specified
accelerator. The command returns a variable length buffer containing a list of status descriptors.

Accelerators are identified using numeric ID values. Accelerator ID is provided in the Log
Specific Identifier field. Bits 15:0 of the Log Specific Identifier field contain Accelerator
ID.

Accelerator logs are packed into Log Entry descriptors. The tables below contain the descriptors’
structure:

Table 4.1: Get Accelerator Log Page data structure
Bytes Description
0:3 Log page length (in bytes)
4:15 reserved for future use
16:N Accelerator log entry descriptor list

Table 4.2: Accelerator Log Entry descriptor
Bytes Description
0:3 Descriptor length (in bytes)
4:11 Timestamp
12:15 Entry type ID
16:N Accelerator-specific information (optional)

The data inside the optional information block can be used to provide more information for the
log entry, e.g. error message string.

Entry types are identified with unique IDs. The exact ID list is to be defined. Below is an
example list:

Table 4.3: Entry type IDs
ID Descrption
0 Invalid firmware ID was selected
1 Invalid input buffer configuration
2 Invalid output buffer configuration
3 Accelerator specific error

4.3 Custom NVMe commands

Controlling accelerator-related features will require a set of custom commands on top of what
NVMe provides. The NVMe standard supports defining vendor-specific commands that use a
separate range of opcodes. The following sections lists custom (vendor-specific) commands
extending the Admin and I/O sets.

Alkali CSD NVMe accelerators test platform 15

4.3.1 Admin command set extension

Custom admin commands will be used to obtain information about the device, status of the
accelerators and will enable basic accelerator control.

The DPTR field of an NVMe command frame will be used to specify buffer location for commands
that transfer data to or from the device.

Accelerator Identify (0xC2)

The identify command returns a data buffer that describes information about the custom accel-
erators available in the device. The command may also be used to determine if the connected
device is an NVMe accelerator device. The data structure has a variable length. The length is
determined by reading the first 8 bytes (confirming that the first 4 bytes hold the magic value).
Once the length is known, the whole buffer can be retrieved.

Accelerators are described using descriptors. The tables below depict data structures used by
the Accelerator Identify command.

Table 4.4: Accelerators Idenfity descriptor structure
Bytes Description
0:3 Magic value (“WDC0”)
4:7 Descriptor length (in bytes)
8:15 Reserved for future use
16:N Accelerator descriptor list

Table 4.5: Accelerators descriptor list entry
Bytes Descritpion
0:3 Accelerator descriptor length (in bytes)
4:5 Accelerator ID (unique within the device)
6:7 Reserved for future use
8:N Accelerator capabilities list

Table 4.6: Accelerator capabilities list entry
Bytes Description
0:3 Capability ID
4:15 Capability specific data

Capabilities are identified with unique IDs. The exact ID list is to be defined. Below is an
example list:

Table 4.7: Capabilites IDs
ID Descrption
0 Accelerator supports firmware exchange
1 Accelerator supports input buffer of size defined in bytes 8:15 of the capability descrip-

tor
2 Accelerator supports output buffer of size defined in bytes 8:15 of the capability descrip-

tor

Alkali CSD NVMe accelerators test platform 16

Get Accelerator Status (0xC6)

The Get Accelerator Status command is used to retrieve information about the current status of
the selected Accelerator available in the system. The command returns a variable length buffer
containing a list of status descriptors.

Accelerators are identified using numeric ID values. Accelerator ID will be provided in the
CDW12 field. Bits 15:0 of the CDW12 field contain Accelerator ID. Bit 31 of the CDW12 is the Retain
Asynchronous Event (RAE) flag - when set to true, status information will not be modified until
accessed with bit set as false. This mechanism allows the host to read the header of the status
data buffer, determine the length of the whole transaction and finally read the whole buffer.

Accelerators statuses are packed into Status descriptors. Statuses are tied to accelerators capa-
bilities, e.g. buffers can report how much data was processed. The tables below summarize the
descriptors’ structure:

Table 4.8: Get Accelerator Status data structure
Bytes Description
0:3 Descriptor length
4:7 Status ID
8:31 reserved for future use
32:N Accelerators status descriptors list

Table 4.9: Accelerator status descriptor
Bytes Description
0:3 Capability ID
4:31 Status specific data

Global Accelerator Control (0xC0)

This Global Accelerator Control command is used to enable/disable accelerator subsystem.

CDW12 field contains operation ID.

Operation identifier will take one of the specified values:

• 0x00 - Enable accelerator subsystem

• 0x01 - Disable accelerator subsystem

4.3.2 I/O commands

I/O commands are used to transfer data to and from the accelerators.

Bits 15:0 of the CDW12 field contain Accelerator ID.

Alkali CSD NVMe accelerators test platform 17

Send data to accelerator (0x81)

This command is used to fill accelerator input buffer with data from host memory.

CDW10 field contains the number of dwords to transfer.

Read data from accelerator (0x82)

This command is used to copy the accelerator output buffer to host memory.

CDW10 field contains the number of dwords to transfer.

Send Firmware to accelerator (0x85)

This command is used to upload firmware from the host memory to the selected accelerator
firmware buffer.

CDW10 field contains the number of dwords to transfer. CDW13 field contains Firmware ID.

Read Firmware from accelerator (0x86)

This command is used to download firmware with selected ID from accelerator firmware buffer
to host.

CDW10 field contains number of dwords to transfer. CDW13 field contains Firmware ID.

Use local storage as accelerator input (0x88)

This command is used to fill accelerator input buffer with data from local storage.

This command reuse CDW10 to CDW13 field layout from standard Read command relocated to
CDW12 to CDW15. CDW14 and CDW15 from original Read command will not be used.

Use local storage as accelerator output (0x8c)

This command is used to copy accelerator output buffer to local storage.

This command reuse CDW10 to CDW13 field layout from standard Write command relocated to
CDW12 to CDW15. CDW14 and CDW15 from original Write command will not be used.

Basic Accelerator Control (0x91)

This Basic Accelerator Control command is used to control the selected accelerator.

The CDW13 field will hold the operation identifier.

Operation identifier will take one of the specified values:

• 0x00 - Reset accelerator - revert the accelerator to a blank stopped state.

• 0x01 - Start accelerator - verify the accelerator configuration (i.e. data buffers, eBPF app)
and start processing.

Alkali CSD NVMe accelerators test platform 18

• 0x02 - Stop accelerator - stop processing without modifying the configuration.

• 0x03 - Set active firmware - select the firmware which will be

More operations are to be defined.

The result of a certain operation can be retrieved with the Get Accelerator Status command.

Start accelerator operation uses additional fields.

DPTR field contains location of Argument List in host memory. CDW10 field contains Argument
List length in dwords. CDW14 field contains Firmware ID.

Argument List will contain 0 or more concatenated entries. The table below depicts Argument
List entry.

Table 4.10: Argument List entry
Bytes Description
0:3 Argument entry length in bytes
4:N Argument entry value

4.4 Example command flow

An example command flow that utilizes NVMe command set extensions is shown below.

1. Get basic information about the system:

1. Send the Accelerator Identify command with the length set to 8 bytes.

1. Verify that the first 4 bytes of the response match the magic value.

2. Use the remaining 4 bytes as the Identify structure length.

2. Send the Accelerator Identify command again using the length obtained earlier.

1. Process the list of accelerators.

2. Process the list of capabilities for each accelerator.

2. Enable accelerator subsystem

1. Send the Global Accelerator Control command with the operation ID set to Enable
accelerator subsystem.

3. Load firmware to the accelerator (applicable only to accelerators supporting firmware
reloading)

1. Check accelerator capabilities to verify that firmware loading is supported. The host
software should cache the capabilities, so that it does not have to read it each time.

2. Send the Send Firmware to accelerator command.

1. Use the accelerator ID field to select which accelerator will receive the
firmware.

2. Set the firmware ID to select firmware slot.

4. Send data to accelerator input buffer

Alkali CSD NVMe accelerators test platform 19

1. Check accelerator capabilities to get input buffer size and use that as the upper limit
on input data size. The host software should cache the capabilities so that it does not
have to read it each time.

2. Use the accelerator ID field to select which accelerator will receive the data.

3. Send the data using either

• Send data to accelerator, or

• Use local storage as accelerator input

5. Start processing

1. Send the Basic Accelerator Control command.

1. Use the accelerator id to select which accelerator should start.

2. Set operation ID to Start accelerator.

3. Set the Firmware ID field to select firmware slot that should be used by the
accelerator.

4. Pack all the firmware arguments into the Argument List field

5. Set correct list length and use DPTR to point to list location in memory.

6. Monitor accelerator status

1. Send the Get Accelerator Status command with the length set to 4 bytes and RAE=1.

1. Use the Accelerator ID field to select the target accelerator.

2. Use the returned value as the status structure length.

2. Send the Get Accelerator Status command again using the retrieved length and
RAE=0.

1. Check the Status ID field to see if the accelerator is still processing, is stopped
or if an error has occurred.

2. Use status descriptors to check capability-specific status information, e.g. the
amount of output data produced for output data buffer capability.

7. Retrieve accelerator logs

1. Send the Get Log Page command with Log Page Identifier = 0xC0, RAE=1 and the
length set to 4 bytes.

1. Use the Log Specific Identifier field to provide target accelerator ID.

2. Use the returned value as the log page length.

2. Send the Get Log Page command again using the retrieved length and RAE=0.

1. Process the log entry list.

8. Retrieve data from the accelerator output buffer

1. Use the output data length obtained from Get Accelerator Status to see how much
output data was produced.

2. Transfer the data using either:

• Read the data from accelerator, or

Alkali CSD NVMe accelerators test platform 20

• Use the local storage as accelerator output

Alkali CSD NVMe accelerators test platform 21

CHAPTER

FIVE

TENSORFLOW LITE MODEL PREPARATION

This chapter describes the preparation and conversion process of models to the TensorFlow Lite
FlatBuffers format.

5.1 TensorFlow Lite models and runtime

The framework used for running inference in the APU software is TensorFlow Lite. TensorFlow
Lite provides:

• a compiler for optimizing and converting the TensorFlow model to the .tflite model,

• an interpreter and runtime for running the model.

The TFLite models are represented and stored in a FlatBuffers format. The interpreter loads the
model from file, and upon invoking it runs the inference.

In TensorFlow Lite, it is possible to run all or some of the model operations (matrix multi-
plication, convolution, vector operations and more) on an accelerator using TFLite Delegates.
Delegates are libraries that tell if the current operation during runtime can be executed on the
accelerator instead of the CPU (in this case APU), and if so they also implement the communi-
cation of the host (APU) with the target in order to delegate the operation and receive results.

In this project, the APU has a delegate for the Versatile Tensor Accelerator (VTA). This accelera-
tor computes the most popular operations present in the deep learning models, such as GEMM,
MIN, MAX, ADD, MUL, operations on matrices and vectors. The acceleration is performed on
quantized models (with INT8 precision).

5.2 Test models used in development

For the test purposes during development, models are generated in ONNX format using the
alkali-csd-fw/blob/main/apu-app/scripts/simple-models.py.

22

https://www.tensorflow.org/lite
https://google.github.io/flatbuffers/
https://www.tensorflow.org/lite/performance/delegates
https://tvm.apache.org/docs/topic/vta/index.html
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/scripts/simple-models.py

5.3 Compiling the TensorFlow Lite models with examples

The detailed description on how to compile a TensorFlow model and get the .tflite file is
present in TensorFlow Lite Converter Overview.

The models from Test models used in development are compiled using random data as calibration
dataset in the alkali-csd-fw/blob/main/apu-app/scripts/convert-to-tflite.py.

Alkali CSD NVMe accelerators test platform 23

https://www.tensorflow.org/lite/convert
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/scripts/convert-to-tflite.py

CHAPTER

SIX

VTA ACCELERATOR

This chapter covers the VTA accelerator - its model, structure, instructions and accessing.

Note: The full specification of the VTA accelerator, along with examples can be found in VTA
Design and Developer Guide in the Apache TVM documentation.

6.1 Basic information

VTA (Versatile Tensor Accelerator) is a generic deep learning accelerator designed for efficient
linear algebra calculations. It is a simple RISC-like processor consisting of four modules:

• Fetch module - loads instruction streams from DRAM, decodes them and routes them to
one of the following modules based on instruction type,

• Load module - loads data from shared DRAM with the host to VTA’s SRAM for processing,

• Store module - stores data from VTA’s SRAM to shared DRAM,

• Compute module - takes data and instructions from SRAM and computes micro-Op kernels
containing ALU (add, sub, max, . . .) and GEMM operations.

Both GEMM and ALU operations are performed on whole tensors of values.

The separate modules work asynchronously, which allows to hide memory access latency (load-
ing new data and storing previous results while compute module processes current data). The
order of operations between all three modules is ensured with dependency FIFO queues.

6.2 Key parameters of the VTA accelerator

VTA is a configurable accelerator, where the computational and memory capabilities are param-
eterized.

As mentioned in Basic information, GEMM and ALU are operating on tensors. The dimensional-
ities of those tensors are specified with the following parameters:

• VTA_BATCH - 1

• VTA_BLOCK_IN - 16

• VTA_BLOCK_OUT - 16

GEMM core computes the following tensors:

24

https://tvm.apache.org/docs/topic/vta/dev/index.html
https://tvm.apache.org/docs/topic/vta/dev/index.html

out[VTA_BATCH * VTA_BLOCK_OUT] = inp[VTA_BATCH * VTA_BLOCK_IN] * wgt[VTA_BLOCK_IN␣
→˓* VTA_BLOCK_OUT]

It means that with the default settings the GEMM multiples 1x16-element input vector by 16x16
weight matrix and produces 1x16-element output vector.

ALU core computes the following tensors:

out[VTA_BATCH * VTA_BLOCK_OUT] = func(out[VTA_BATCH * VTA_BLOCK_OUT], inp[VTA_
→˓BATCH * VTA_BLOCK_OUT])

It means that with the default settings the ALU core computes requested operation on 1x16
vectors.

Next, there are parameters controlling the number of bits in tensors:

• VTA_INP_WIDTH - number of bits for input tensor elements, 8

• VTA_OUT_WIDTH - number of bits for output tensor elements, 8

• VTA_WGT_WIDTH - number of bits for weights tensor elements, 8

• VTA_ACC_WIDTH - number of bits for accumulator (used in GEMM and ALU for storing
intermediate results), 32

• VTA_UOP_WIDTH - number of bits representing micro-op data width, 32

• VTA_INS_WIDTH - length of a single instruction in VTA, 128

Note: The last parameter should not be modified

Another set of parameters configures buffer sizes (in bytes) for:

• VTA_INP_BUFF_SIZE - input buffer size, 32768 B

• VTA_OUT_BUFF_SIZE - output buffer size, 32768 B

• VTA_WGT_BUFF_SIZE - weights buffer size, 262144 B

• VTA_ACC_BUFF_SIZE - accumulator buffer size, 131072 B

• VTA_UOP_BUFF_SIZE - micro-op buffer size, 32768 B

The above parameters affect directly such aspects as:

• Data addressing in SRAM,

• Computational capabilities,

• Scheduling of operations.

Alkali CSD NVMe accelerators test platform 25

6.3 VTA instructions

There are four instructions in VTA:

• LOAD - loads a 2D tensor from DRAM into the input buffer, weight buffer or register file,
and micro-kernel into the micro-op cache.

• STORE - stores a 2D tensor from the output buffer to DRAM.

• GEMM - performs a micro-op sequence of matrix multiplications,

• ALU - performs a micro-op sequence of ALU operations.

The instructions have 128-bit length, storing both operation type and their parameters.

6.4 The structure of the VTA accelerator

Note: More thorough documentation can be found in VTA Design and Developer Guide.

As described in Basic information, there are four modules - FETCH, LOAD, COMPUTE and
STORE.

FETCH module receives instructions from DRAM, and forwards them to one of the other three
modules.

Each of the modules work asynchronously, fetching the instructions from the fetch module and
performing actions.

The API for communicating with the VTA via its driver implementation is provided in the alkali-
csd-fw/blob/main/apu-app/src/vta/vta_runtime.h.

The following subsections will provide both high-level look at operations, as well as low-level
functions used to implement them.

6.4.1 Shared DRAM between VTA and host

To perform LOAD and STORE operation between the shared DRAM and VTA’s SRAM modules, the
shared (memory mapped) space needs to be allocated.

Managing shared buffers is done via VTABufferAlloc(size_t size) (allocating the memory
mapped region) and VTABufferFree(void *bufferaddr) (releasing the memory mapped re-
gion).

Alkali CSD NVMe accelerators test platform 26

https://tvm.apache.org/docs/topic/vta/dev/index.html
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/vta/vta_runtime.h
https://github.com/antmicro/alkali-csd-fw/blob/main/apu-app/src/vta/vta_runtime.h

6.4.2 LOAD/STORE modules

LOAD and STORE modules are responsible for passing data between shared DRAM and SRAM
buffers in VTA.

They perform 2D transfers, allowing to apply padding and stride of the data on-the-fly.

Warning: Some parameters in the below functions are going to have in unit elements
disclaimer. It is the smallest tensor the SRAM can accept, and it depends on the SRAM type.
The meaning of unit elements is specified in the VTA memory/addressing scheme.

To load the data from DRAM to VTA’s SRAM, the VTALoadBuffer2D method is used

VTALoadBuffer2D(
VTACommandHandle cmd,
void* src_dram_addr,
uint32_t src_elem_offset,
uint32_t x_size,
uint32_t y_size,
uint32_t x_stride,
uint32_t x_pad_before,
uint32_t y_pad_before,
uint32_t x_pad_after,
uint32_t y_pad_after,
uint32_t dst_sram_index,
uint32_t dst_memory_type);

Where:

• cmd - VTA command handle, created using VTATLSCommandHandle()

• src_dram_addr - source DRAM address, allocated in shared space

• src_elem_offset - the source DRAM offset in unit elements

• x_size - the lowest dimension (x axis) size in unit elements

• y_size - the number of rows (y axis)

• x_stride - the x axis stride

• x_pad_before - start padding on x axis

• y_pad_before - start padding on y axis

• x_pad_after - end padding on x axis

• y_pad_after - end padding on y axis

• dst_sram_index - destination SRAM index

• dst_memory_type - destination memory type (memory types are specified in VTA mem-
ory/addressing scheme)

To load the data from VTA’s SRAM to DRAM, the VTAStoreBuffer2D method is used:

Alkali CSD NVMe accelerators test platform 27

VTAStoreBuffer2D(
VTACommandHandle cmd,
uint32_t src_sram_index,
uint32_t src_memory_type,
void* dst_dram_addr,
uint32_t dst_elem_offset,
uint32_t x_size,
uint32_t y_size,
uint32_t x_stride);

Where:

• cmd - VTA command handle

• src_sram_index - the beginning location of the data in given SRAM, in unit elements

• src_memory_type - source memory type (memory types are specified in VTA mem-
ory/addressing scheme)

• dst_dram_addr - pointer to DRAM memory

• dst_elem_offset - offset from the dst_dram_addr

• x_size - size of the tensor on x axis in unit elements

• y_size - size of the tensor on y axis

• x_stride - stride along x axis

Warning: Only VTA_MEM_ID_OUT SRAM is supported as src_memory_type in
VTAStoreBuffer2D.

The above functions create 128-bit instructions that are passed to instruction fetch module, and
later passed to LOAD/STORE modules.

6.4.3 COMPUTE module

COMPUTE module loads data from SRAM buffers - input, weight or accumulator buffers (more
information in VTA memory/addressing scheme), and performs either GEMM or ALU operations.

The instructions for COMPUTE module are wrapped in so-called micro-op kernels - a set of
instructions applied on whole ranges of SRAM buffers.

The micro-op definition starts with specifying optional outer and inner loops, created using:

VTAUopLoopBegin(
uint32_t extent,
uint32_t dst_factor,
uint32_t src_factor,
uint32_t wgt_factor);

Where:

• extent - the extent of the loop, in other words the number of iterations for a given loop
(outer or inner)

Alkali CSD NVMe accelerators test platform 28

• dst_factor - the accum factor, is a factor by which the iterator is multiplied when com-
puting address for ACC SRAM

• src_factor - the input factor, is a factor by which the iterator is multiplied when comput-
ing address for INP SRAM

• wgt_factor - the weight factor, is a factor by which the iterator is multiplied when com-
puting address for WGT SRAM

The end of such loop is marked with VTAUopLoopEnd(). From the driver perspective, it changes
the parameters of all VTAUopPush functions within the loop’s scope. All of those VTAUopPush are
treated as list of micro-op instructions (uop_instructions), and those instructions along with
loops are micro-op kernel.

The COMPUTE module instructions are created using:

VTAUopPush(
uint32_t mode,
uint32_t reset_out,
uint32_t dst_index,
uint32_t src_index,
uint32_t wgt_index,
uint32_t opcode,
uint32_t use_imm,
int32_t imm_val);

• mode - 0 (VTA_UOP_GEMM) for GEMM, 1 (VTA_UOP_ALU) for ALU

• reset_out - 1 if ACC SRAM in given address should be zeroed, 0 otherwise

• dst_index - the ACC SRAM base index

• src_index - the INP SRAM base index for GEMM, the ACC SRAM base index for second
value for ALU

• wgt_index - the WGT SRAM base index

• opcode - ALU opcode, tells what operation is computed

• use_imm - tells if the immediate value imm_val should be used instead of tensor provided
in src_index

• imm_val - immediate value in ALU mode, applied as a second value in ALU operation

The imm_val immediate value is a 16-bit signed integer.

The GEMM operation pseudo-code looks as follows

for (e0 = 0; e0 < extent0: e0++)
{

for (e1 = 0; e1 < extent1; e1++)
{

for (instruction : uop_instructions)
{

src_index, wgt_index, dst_index = get_src_wgt_dst_
→˓indices(instruction);

acc_idx = dst_index + e0 * dst_factor0 + e1 * dst_factor1;

(continues on next page)

Alkali CSD NVMe accelerators test platform 29

(continued from previous page)

inp_idx = src_index + e0 * src_factor0 + e1 * src_factor1;
wgt_idx = wgt_index + e0 * wgt_factor0 + e1 * wgt_factor1;
ACC_SRAM[acc_idx] += GEMM(INP_SRAM[inp_idx], WGT_SRAM[wgt_idx]);

}
}

}

And the ALU operation pseudo-code looks as follows

for (e0 = 0; e0 < extent0: e0++)
{

for (e1 = 0; e1 < extent1; e1++)
{

for (instruction : uop_instructions)
{

src_index, dst_index = get_src_dst_indices(instruction);
acc_idx_1 = dst_index + e0 * dst_factor0 + e1 * dst_factor1;
acc_idx_2 = src_index + e0 * src_factor0 + e1 * src_factor1;
if (use_imm)
{

ACC_SRAM[acc_idx1] = ALU_OP(ACC_SRAM[acc_idx1], imm_val);
}
else
{

ACC_SRAM[acc_idx1] = ALU_OP(ACC_SRAM[acc_idx1], ACC_SRAM[acc_
→˓idx2]);

}
}

}
}

6.5 VTA module synchronization mechanism

The VTA LOAD, STORE, COMPUTE work asynchronously. It allows to perform data loading, storing
and computations in parallel, which makes latency hiding possible.

However, it requires proper synchronization mechanism so all instructions are executed in a
correct order. For this purpose, dependency queues are created.

There are four dependency queues:

• LOAD->``COMPUTE`` dependency queue - tells COMPUTE module that data has finished
loading and processing can start.

• COMPUTE->``LOAD`` dependency queue - tells LOAD module that COMPUTE module has
finished processing and new data can be loaded.

• STORE->``COMPUTE`` dependency queue - tells COMPUTE module that computed data
from ACC SRAM is stored in shared DRAM and can be overriden with new computations.

Alkali CSD NVMe accelerators test platform 30

• COMPUTE->``STORE`` dependency queue - tells STORE module that COMPUTE module has
finished processing and data is ready to be stored in shared DRAM.

There are two methods for managing those dependency queues:

• VTADepPush(from, to) - for pushing a token of “readiness”,

• VTADepPop(from, to) - for popping a “readiness” token from the given queue. If the token
is not present, the module waits until VTADepPush pushes a new token.

This allows to control latency hiding and all of the algorithm’s flow.

6.6 VTA memory/addressing scheme

VTA accelerator consists of several SRAM modules. Each of them is characterized by three
parameters:

• kBits - number of bits per element,

• kLane - number of lanes in a single element,

• kMaxNumElements - maximum number of elements.

There are following SRAM modules:

• UOP SRAM (VTA_MEM_ID_UOP) - memory for storing micro-op kernels’ instructions,

• WGT SRAM (VTA_MEM_ID_WGT) - memory for storing weights,

• INP SRAM (VTA_MEM_ID_INP) - memory for storing inputs,

• ACC SRAM (VTA_MEM_ID_ACC) - accumulator memory, holding the intermediate results
and ALU input tensors,

• OUT SRAM (VTA_MEM_ID_OUT) - provides the casted 8-bit values from the ACC SRAM.

Table 6.1: VTA memory types
Memory
type

kBits kLane kMaxNumElements

VTA_MEM_ID_WGTVTA_WGT_WIDTH
(8)

VTA_BLOCK_IN * VTA_BLOCK_OUT
(16 * 16)

VTA_WGT_BUFF_DEPTH
(1024)

VTA_MEM_ID_INPVTA_INP_WIDTH
(8)

VTA_BATCH * VTA_BLOCK_IN (1 *
16)

VTA_INP_BUFF_DEPTH
(2048)

VTA_MEM_ID_ACCVTA_ACC_WIDTH
(32)

VTA_BATCH * VTA_BLOCK_OUT (1 *
16)

VTA_ACC_BUFF_DEPTH
(2048)

VTA_MEM_ID_OUTVTA_OUT_WIDTH
(8)

VTA_BATCH * VTA_BLOCK_OUT (1 *
16)

VTA_OUT_BUFF_DEPTH
(2048)

VTA_MEM_ID_UOPVTA_UOP_WIDTH
(32)

1 VTA_UOP_BUFF_DEPTH
(8192)

VTALoadBuffer2D can write to INP, WGT and ACC SRAMs. VTAStoreBuffer2D can read from
OUT SRAM (not ACC SRAM).

Alkali CSD NVMe accelerators test platform 31

Warning: It means that values need to be properly requantized and clamped to prevent
overflows.

Alkali CSD NVMe accelerators test platform 32

CHAPTER

SEVEN

OPERATIONS ACCELERATED ON VTA ACCELERATOR

This chapter describes the currently supported TFLite operations on VTA accelerator.

7.1 TensorFlow Lite delegation scheme

TensorFlow Lite allows to delegate certain operations to an accelerator using the Delegate API.
It consists of:

• SimpleDelegateInterface - is executed during initialization of model runtime, it decides
what operations should be delegated to the accelerator based on its capabilities.

• SimpleDelegateKernelInterface - is executed during inference, it implements the com-
munication with the accelerator to compute and obtain results.

7.1.1 SimpleDelegateInterface

In the VTA delegate implementation, the VTADelegate class derives from
SimpleDelegateInterface.

This class requires implementing following methods:

• IsNodeSupportedByDelegate - this function decides whether the node (operation in the
neural network model) can be delegated or not to the accelerator.

• Initialize - performs initialization actions for the delegation checker, not the accelerator
itself.

• Name - returns the name of the delegate.

• CreateDelegateKernelInterface - creates an object inheriting from
SimpleDelegateKernelInterface.

IsNodeSupportedByDelegate receives:

• registration data, such as builtin_code or custom_name, telling the type of the operator
(e.g. kTfLiteBuiltinAdd, kTfLiteBuiltinConv2d.

• node is a pointer to the current node that is being considered for delegation. It contains
such data as indices for inputs, outputs, intermediate and temporary tensors (indices to
tensors in context->tensors array)

• context - a TFLite context containing list and count of tensors in the model, execution
plan and methods for getting and manipulating tensors.

33

It returns true when the node can be delegated, false otherwise.

In VTADelegate, the currently supported operators are:

• kTfLiteBuiltinAdd - tensor addition of elements in 8-bit format.

• kTfLiteBuiltinConv2d - 2D convolution, with 8-bit inputs, kernels, outputs and 32-bit
bias.

Warning: The support for kTfLiteBuiltinConv2d is not complete.

7.2 Adding a new operator to the delegate with 8-bit precision

The neural network models usually operate using 32-bit floats, as required during the train-
ing process to train them efficiently. However, VTA accelerator can only operate on quantized
models, where weights and activations are 8-bit.

TensorFlow Lite provides methods for quantizing neural networks, as well as necessary param-
eters to infer quantized models during inference.

During the quantization process, the algorithm passes the calibration dataset through the neural
network, and computes the following parameters for every tensor in the network (input tensors,
output tensors, activation tensors, weights’ tensors):

• scale - 32-bit float

• zero_point - 8-bit signed integer

During inference, the floating-point operations are simulated with integers using dequantiza-
tion and requantization. Dequantization is the process of representing quantized number in
a higher-precision form (e.g. 32-bit integers representing fixed-point arithmetics, as in Ten-
sorFlow Lite). Requantization is a process of bringing higher precision values (e.g. 32-bit
accumulators) to 8-bit representation.

The requantization (or rather quantization) and dequantization process includes inputs and
outputs.

The formula for quantization with given scale and zero_point is following:

Q(r) = int(s / scale) + zero_point

The dequantization, on the other hand, is computed as follows:

D(q) = cast<type>(q - zero_point) * scale

Where type corresponds to the type after dequantization (in terms of network’s outputs it is
32-bit float).

When it comes to operations within the neural network, each input tensor (activations, weights,
. . .) of the node (operation) needs to be dequantized, and the final output of a given node
(operation) needs to be requantized.

What is more, to prevent overflows, the clamping of the outputs is performed on every outputs.

To sum up, the flow of every node should look as follow:

Alkali CSD NVMe accelerators test platform 34

• Dequantize all input tensors

• Compute the operation on dequantized input tensors

• Requantize the output tensors (in higher precision)

• Clamp values in output tensors to range (the range may differ depending on the operator,
usually it is the range of values in quantized values)

• Cast the output tensors to a target type

• Return the outputs.

The scale and zero_point parameters can be computed per-tensor, or per-channel. The de-
tails which variant is used in a given operation is described in TensorFlow Lite Quantization
specification.

Note: It is possible to simplify requantization/dequantization process for certain operations by
simplifying formulas.

In TensorFlow Lite, since the operations are supposed to be quantized and scales are 32-bit
floating points, they are firstly decomposed into a normalized fraction and an integral power of
two (shift):

scale = multiplier * 2 ^ (shift)

E.g. for value 96 the multiplier is 0.75 and shift is 7. The shift in TensorFlow Lite a 32-bit signed
integer, and the multiplier is again 32-bit floating point value in range [0.5-1.0].

Secondly, the multiplier is multiplied by 2 ^ 31 and stored as a 32-bit Integer.

The above approach present in TensorFlow lite requires up to 64-bit registers during requanti-
zation when the 32-bit integer value (subtracted by zero point) is multiplied by 32-bit signed
integer representing multiplier.

VTA accelerator cannot follow this scheme since the ACC SRAM has only 32-bit width.

To address this, the VTA delegate follows a customized approach where multiplier and shift are
16-bit signed integers instead of 32-bit signed integers. This, in the peak processing requires
32-bit registers, which still fits in VTA capabilities.

To sum up, the computation of multiplier and shift looks as follows:

q = frexp(scale, &shift32);
q_fixed = round(q * (1 << 15));
if (q_fixed == (1 << 15))
{

q_fixed /= 2;
++shift32;

}
multiplier = static_cast<int16_t>(q_fixed);
shift = static_cast<int16_t>(shift32);

Dequantization of values is computed as follows:

Alkali CSD NVMe accelerators test platform 35

https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec

valoffset = offset + val; // max 7 bits required
valshift = valoffset * (1 << left_shift); // ~15 bits required
valscaledraw32 = valshift * multiplier; // ~32 bits required
valscaled = (valscaledraw32 + nudge) >> 15; // ~16 bits required
finval = valscaled >> -shift;

Left shift is a constant value equal to 7. Nudge is a value used for rounding to nearest.

Note: The left shift is being embedded in the scaling factor.

Requantization of values is computed as follows:

valscaled = val * qdata.multiplier;
valshifted = valscaled >> (15 - qdata.shift);
valoffset = valshifted + qdata.offset;
valclamped = max(MIN, min(valoffset, MAX));

7.3 ADD operator

The current implementation supports adding signed 8-bit integer tensors and returning signed
8-bit integer. The operation can be represented as follows:

(Y_q - z_y) * s_y = (A_q - z_a) * s_a + (B_q - z_b) * s_b
Y_q = 1/s_y * [(A_q - z_a) * s_a + (B_q - z_b) * s_b] + z_y
Y_q = s_yinv * [(A_q - z_a) * s_a + (B_q - z_b) * s_b] + z_y

Where:

• z_y, s_y - zero point and scale for output tensor,

• z_a, s_a - zero point and scale for 1st input tensor,

• z_b, s_b - zero point and scale for 2nd input tensor,

• Y_q - quantized output,

• A_q - quantized 1st input,

• B_q - quantized 2nd input,

• s_yinv - inverted s_y.

The aim is to compute Y_q.

The scales are going through additional processing before converting to multipliers and shifts:

doubled_max_scale = 2 * max(s_a, s_b);
s_a' = s_a / doubled_max_scale;
s_b' = s_b / doubled_max_scale;
s_yinv' = doubled_max_scale / ((1 << left_shift) * s_y)

Usage of doubled_max_scale is to prevent having too small scales for 16-bit multipliers and
shifts to store.

Alkali CSD NVMe accelerators test platform 36

Firstly, the inputs are dequantized, so the above formula takes the following form:

Y_q = s_yinv * [A' + B'] + z_y

Warning: Current implementation performs dequantization on CPU. Those operations may
need to be performed on VTA in the future to perform operations entirely on VTA.

The A' and B' are 16-bit signed integers that are passed to VTA’s ACC SRAM buffer. They are
aligned to have size divisible by VTA_BATCH * VTA_BLOCK_OUT - those are the smallest units on
which VTA performs ALU operations.

After this, the delegate sends the vectors of the following length:

maxelements = VTA_ACC_BUFF_DEPTH / NUM_THREADS / 2 * VTA_BLOCK_OUT

Where 2 stands for two input vectors to be stored in the ACC SRAM, and NUM_THREADS is a
number of “threads” of processing in the VTA, can be either 1 or 2.

The idea of threading in VTA comes from asynchronous nature of LOAD, STORE and COMPUTE
modules - the COMPUTE module can process data while LOAD module handles data loading from
DRAM and STORE module stores results in DRAM. This approach is called latency hiding. The
“threading” is achieved by proper management of dependency queues between the modules.

To sum up, the LOAD module fills half of the SRAM based on which “thread” it works on, while
the COMPUTE module processes the data on the other half of the SRAM.

The processing of COMPUTE module consists of following operations:

A = A + B
A = A * multiplier
A = A >> (15 - shift)
A = A + offset
A = MIN(A, 128)
A = MAX(A, -127)

After the above operations, the ACC SRAM contains the results that can safely be casted to 8-bit
integers - it can be loaded using VTAStoreBuffer2D.

The operation is repeated until all the elements in the input tensors are processed.

The implementation of the operation is present in alkali-csd-fw/apu-app/src/
vta-delegate-ops.cpp.

7.4 CONV2D operator

Two dimensional convolution in TensorFlow Lite for VTA takes 8-bit input, 8-bit weights, 32-bit
bias and returns 8-bit outputs. Weights are quantized symmetrically, which means that zero
point for them equals 0. Assuming x is a convolution operator, the operations look like this:

(Y_q - z_y) * s_y = (s_w * W) x [s_i * (I - z_i)] + (s_b * B)
(Y_q - z_y) * s_y = s_w * s_i * [W x (I - z_i)] + (s_b * B)

Alkali CSD NVMe accelerators test platform 37

The quantization algorithm assures that s_b = s_w * s_i (approximately). This leads to:

(Y_q - z_y) * s_y = s_w * s_i * [W x (I - z_i) + B]
Y_q = [(s_w * s_i) / s_y] * [W x (I - z_i) + B] + z_y

It means that convolution W x (I - z_i) can be performed without dequantization (values are
8-bit). The result of convolution is 32-bit, to which the 32-bit bias is added.

The only floating-point parameter here is [(s_w * s_i) / s_y] - it can be applied at the very
end of processing (only before adding z_y). For this parameter the multiplier and shift are
computed.

When loading data from TensorFlow Lite, the first step is to convert the data to proper, VTA-
compliant layout.

Layouts for convolution data are following:

• input: N I Hi Wi

• weights: O I Hk Wk

• output: N O Ho Wo

Where:

• N - batch size,

• I - number of input channels,

• Hi - input height,

• Wi - input width,

• O - output channels,

• Hk - kernel height,

• Wk - kernel width,

• Ho - output height,

• Wo - output width.

The expected layouts by VTA are:

• input: N' I' Hi Wi n i

• weights: O' I' Hk Wk o i

• output: N' O' Ho Wo n o

Where:

• n - subgroup of batch dimension of size VTA_BATCH (1),

• i - subgroup of input channels’ dimension of size VTA_BLOCK_IN (16),

• o - subgroup of output channels’ dimension of size VTA_BLOCK_OUT (16),

• N' - number of batch subgroups n,

• I' - number of input channels subgroups i,

• O' - number of output channels subgroups o.

Alkali CSD NVMe accelerators test platform 38

To convert data to this layout the original dimensions need to be:

• zero-padded so they are divisible by block computable by VTA

• rearranged so the data can be passed just for processing directly to VTA.

During convolution, for particular sample n, input pixel (h,w) and particular kernel pixel (hk,
wk) partial convolution result is computed for 16 input channels and 16 output channels (using
16x16 weights).

Current implementation assumes that:

• at least a single input row should fit into INPUT SRAM,

• at least a single kernel (for 16 output channels) should fit into WGT SRAM,

• at least for 16 output channels, full output row, needed biases, multipliers and shifts
should fit into ACC SRAM.

The pseudocode for the current implementations is as follows:

for each batch subgroup
for each output channel subgroup

LOAD weights for current output channels to WGT SRAM
LOAD biases for current output channels to ACC SRAM
LOAD multipliers for current output channels to ACC SRAM
LOAD shifts for current output channels to ACC SRAM
for each output row

COMPUTE micro-op
VTAFOR output channels to compute

VTAFOR rows to compute
RESET outputs in ACC SRAM

for each input channel subgroup
Load input row for given input channels to INP SRAM
COMPUTE micro-op

VTAFOR output channels to compute
VTAFOR rows to compute

for kernel rows
for kernel cols

RUN GEMM on data
VTA ALU ADD bias to convolution output
VTA ALU MUL outputs by scale multiplier
VTA ALU SHR outputs by scale shift
VTA ALU ADD zero_point to outputs
Store partial outputs from OUT SRAM in DRAM

The implementation of the operation is present in alkali-csd-fw/apu-app/src/
vta-delegate-ops.cpp.

Alkali CSD NVMe accelerators test platform 39

7.5 Further work

• Finish testing CONV2D operator.

• Test and debug (if necessary) sequence of VTA operations.

• Load data with or without preprocessing depending on context (next VTA op vs loading
data from TFLite context).

• Add loading padding and stride data from model’s structure.

• Run and benchmark VTA accelerator on large network.

7.6 Resources

• TVM VTA Getting started guide

• Example demonstrating sample IR code

• TFLite tutorial on delegate implementation

• In alkali-csd-fw repository, the sources regarding delegate provide lots of useful infor-
mation regarding VTA, delegating system and quantization scheme, they are also docu-
mented:

– apu-app/src/vta-delegate.hpp

– apu-app/src/vta-delegate.cpp

– apu-app/src/vta-delegate-ops.cpp

– apu-app/src/vta/sim_driver.cc

Alkali CSD NVMe accelerators test platform 40

https://tvm.apache.org/docs/topic/vta/tutorials/vta_get_started.html#sphx-glr-topic-vta-tutorials-vta-get-started-py
https://tvm.apache.org/docs/topic/vta/tutorials/vta_get_started.html#alu-operations
https://www.tensorflow.org/lite/performance/implementing_delegate
https://github.com/antmicro/alkali-csd-fw

CHAPTER

EIGHT

FLASHING AND CONNECTING THE BASALT BOARD

8.1 Flashing through NVMe interface

Using the fw-download and fw-commit commands you can flash new firmware to the onboard
QSPI flash.

First you need to send the firmware file to the device with:

sudo nvme fw-download <nvme device> --fw=<boot.bin file> --xfer=131072

And then trigger the flashing process with:

sudo nvme fw-commit <nvme device>

After running the fw-commit command you need to monitor apu-app logs to determine when
flashing completes. Once completed then app prints out how much data was written:

Writing 50856272 bytes of firmware to /dev/mtd0
50856272 bytes written

8.2 Flashing via JTAG using Vivado

In case of anything going wrong and you cannot access Basalt via NVMe you can flash it via
JTAG and Vivado

1. First you need to ensure that Basalt won’t boot from QSPI because once it does the flashing
will fail (Vivado hangs). There are two options available:

a). Select JTAG boot mode

To do this use the tiny dipsitches on the board, they should be accessible
through a window in the cover. Set MODE to 3'b000 by turning on all of
them (on = low).

b). Erase the QSPI flash

This is possible provided that you have access to the UART and at least U-
Boot works. Interrupt the boot process by hitting enter in the UART con-
sole right after powering on the board (PCIe need not to be connected).
Once you get an U-Boot prompt (it should say “ZynqMP>”) issue the fol-
lowing commands to erase the flash completely:

41

sf probe 0 0 0
sf erase 0 0x8000000

Once the flash is erased the board needs to be power cycled.

2. Vivado needs the BOOT.bin file as well as fsbl.elf separately. Do not extract and use
the FSBL from BOOT.bin as it won’t work But you can use the same FSBL that was used
to created BOOT.bin.

3. Connect a JTAG adapter compatible with Vivado to the J2 connector on the Basalt board.

4. Launch Vivado (tested with 2019.2 and 2021.2). It is best to do that from a terminal as
during flashing it will output some progress information there which is not visible in GUI

5. Open a new HW target, You should see two “devices”: xczu7_0 and arm_dap_1.

6. Right click the first one and select “Add configuration memory device”. Select
mt25ql01g-qspi-x4-single for the flash type (whether it is x1, x2 or x4 should not mat-
ter).

7. Point Vivado to the BOOT.bin file for Basalt as well as to the extracted fsbl.elf file.

8. Uncheck the “Erase” option (the flash has been already erased) and “Verify” (for speedup,
unless you want to be absolutely sure that the flashing succeeds). Click “OK”

9. Vivado should start flashing which may take ~30min. In the terminal (used to run Vivado)
you should see the following (or simial) output:

Using default mini u-boot image file - ../Vivado/2021.2/data/xicom/
→˓cfgmem/uboot/zynqmp_qspi_x4_single.bin
===== mrd->addr=0xFF5E0204, data=0x00000222 =====
BOOT_MODE REG = 0x0222
Downloading FSBL...
Running FSBL...
===== mrd->addr=0xFFD80044, data=0x00000000 =====
===== mrd->addr=0xFFD80044, data=0x00000003 =====
Finished running FSBL.

U-Boot 2021.01-00102-g43adebe (Oct 11 2021 - 01:44:06 -0600)

Model: ZynqMP MINI QSPI SINGLE
Board: Xilinx ZynqMP
DRAM: WARNING: Initializing TCM overwrites TCM content
256 KiB
EL Level: EL3
Multiboot: 16384
In: dcc
Out: dcc
Err: dcc
ZynqMP> sf probe 0 0 0
SF: Detected n25q00a with page size 256 Bytes, erase size 64 KiB, total␣
→˓128 MiB
ZynqMP> Sector size = 65536.
sf write FFFC0000 0 20000

(continues on next page)

Alkali CSD NVMe accelerators test platform 42

(continued from previous page)

device 0 offset 0x0, size 0x20000
SF: 131072 bytes @ 0x0 Written: OK
ZynqMP> sf write FFFC0000 20000 20000
device 0 offset 0x20000, size 0x20000
SF: 131072 bytes @ 0x20000 Written: OK

The last three lines should continuously repead with increasing addresses.

10. Once the flashing is complete power cycle the board.

8.3 Connecting the board to the PC

For instructions on connecting the board to the PC follow alkali-csd-projects README.

Alkali CSD NVMe accelerators test platform 43

https://github.com/antmicro/alkali-csd-projects

	Introduction
	Repository reference
	System architecture
	FPGA design
	Building the design
	NVMe register module
	Generating NVMe IP
	Updating register definitions

	Adding new registers

	VTA module
	Built artifacts

	Memory map
	PCIe and NVMe Cores
	VTA Cores
	RPU-APU shared memory
	Ramdisk area

	Host Software
	Building the app
	Using the app

	APU Software
	Building the APU software
	APU base system
	uBPF Virtual Machine
	Userspace custom NVMe command handler
	Adding support for new NVMe commands

	RPU Software
	Operating system
	NVMe firmware overview
	Building and running NVMe firmware
	Adding support for new NVMe commands

	NVMe commands and extensions
	Basic NVMe operations
	NVMe Vendor extensions
	Get Log Page (Log Page Identifier 0xC0)

	Custom NVMe commands
	Admin command set extension
	Accelerator Identify (0xC2)
	Get Accelerator Status (0xC6)
	Global Accelerator Control (0xC0)

	I/O commands
	Send data to accelerator (0x81)
	Read data from accelerator (0x82)
	Send Firmware to accelerator (0x85)
	Read Firmware from accelerator (0x86)
	Use local storage as accelerator input (0x88)
	Use local storage as accelerator output (0x8c)
	Basic Accelerator Control (0x91)

	Example command flow

	TensorFlow Lite model preparation
	TensorFlow Lite models and runtime
	Test models used in development
	Compiling the TensorFlow Lite models with examples

	VTA accelerator
	Basic information
	Key parameters of the VTA accelerator
	VTA instructions
	The structure of the VTA accelerator
	Shared DRAM between VTA and host
	LOAD/STORE modules
	COMPUTE module

	VTA module synchronization mechanism
	VTA memory/addressing scheme

	Operations accelerated on VTA accelerator
	TensorFlow Lite delegation scheme
	SimpleDelegateInterface

	Adding a new operator to the delegate with 8-bit precision
	ADD operator
	CONV2D operator
	Further work
	Resources

	Flashing and connecting the Basalt board
	Flashing through NVMe interface
	Flashing via JTAG using Vivado
	Connecting the board to the PC

