
Antmicro

Antmicro grvl

2026-01-26

CONTENTS

1 What is grvl? 1

2 Quickstart 2
2.1 Linking (CMAKE) . 2
2.2 Minimal example . 2

3 Examples 4
3.1 Animating values . 4
3.2 Callbacks . 4
3.3 Popups . 5
3.4 Adding images and fonts . 6

4 General API reference 7

5 XML reference 13
5.1 XML validity . 13
5.2 How to construct a grvl XML document? . 13
5.3 Generic component/container attributes . 13
5.4 Generic screen attributes . 14
5.5 Special attributes . 14
5.6 List of components/containers . 15
5.7 List of screens . 19
5.8 List of special components . 22

6 JavaScript reference 24
6.1 JavaScript feature support . 24
6.2 How to use JavaScript with grvl? . 24
6.3 grvl functions available in JavaScript . 25

7 Prefabs 27

8 Metadata 28

9 On-screen keyboard 29

10 Widget API Reference 30

Index 39

i

CHAPTER

ONE

WHAT IS GRVL?

Grvl (pronounced gravel) is Antmicro’s open source library for creating rich, modern, animated
graphical user interfaces, developed for use on constrained devices like MCUs.

Grvl is designed to be portable, currently supporting standalone Simple DirectMedia Layer
(SDL) based applications and Zephyr RTOS.

With its collection of built-in widgets, XML-based config and support for reconfiguration in
runtime, grvl was created with ease of use for both designers and developers in mind.

1

https://github.com/libsdl-org/SDL
https://zephyrproject.org/

CHAPTER

TWO

QUICKSTART

2.1 Linking (CMAKE)

2.1.1 Standalone
Pull grvl and link it in your project:

add_subdirectory(GRVL_SOURCE_DIR)
target_link_libraries(app PRIVATE grvl)

2.1.2 Zephyr

set(GRVL_ZEPHYR ON)
add_subdirectory(GRVL_SOURCE_DIR)
target_link_libraries(app PRIVATE grvl)

2.2 Minimal example

#include <grvl.h>
#include <Manager.h>
...
int main(){

...
// initialize callbacks
gui_callbacks_t callbacks;
callbacks.malloc = malloc;
callbacks.free = free;
callbacks.dma_operation = dma_operation;
callbacks.dma_operation_clt = dma_operation_clt;
callbacks.dma_fill = dma_fill;
callbacks.wait_for_vsync = wait_for_vsync;
callbacks.flipping_completed = flipping_completed;
callbacks.set_layer_pointer = set_layer_poiner;
callbacks.gui_printf = gui_printf;
callbacks.mutex_create = mutex_create;
callbacks.mutex_lock = mutex_lock;
callbacks.mutex_unlock = mutex_unlock;
callbacks.mutex_destroy = mutex_destroy;

(continues on next page)

2

(continued from previous page)

callbacks.get_timestamp = get_timestamp;
grvl::Init(&callbacks);

// initalize manager
Manager::Initialize(WIDTH, HEIGHT, BPP, IS_FLIPPED);

// fill the gui media
Manager::GetInstance()

.AddFontToFontContainer(FONT_NAME_USED_IN_XML, new Font(FONT_PATH))

.AddImageContentToContainer(IMAGE_NAME_USED_IN_XML, new␣
→˓ImageContent(ImageContent::FromPNG(IMAGE_PATH)))

.AddCallbackToContainer(CALLBACK_NAME_USED_IN_XML,␣
→˓(grvl::Event::CallbackPointer) callback_function)

.BuildFromXML(XML_PATH)

.InitializationFinished();

while(running){
// update gui
Manager::GetInstance().MainLoopIteration();
...
platform_specific_wait(); // e.g. SDL_WaitEventTimeout or k_msleep
...

// update specific components
ProgressBar* progressBar = dynamic_cast<ProgressBar*>(displayManager->

→˓GetActiveScreen()->GetElement("progress_bar"));
progressBar->SetProgressValue(counter % 100);
...
// handle events
Manager::GetInstance().ProcessTouchPoint(state, x, y);

}
}

For more in-detail examples see the Examples chapter.

Antmicro 3

CHAPTER

THREE

EXAMPLES

3.1 Animating values
First, grab a component by ID:

ProgressBar* progressBar = dynamic_cast<ProgressBar*>(displayManager->
→˓GetActiveScreen()->GetElement("progress_bar"));

Then execute a setter in the main loop:

progressBar->SetProgressValue((SDL_GetTicks() / 100) % 100);

3.2 Callbacks
There are two ways to add callbacks to GUI components. You can write them in either C++ or
JavaScript.

3.2.1 C++
Create the callbacks:

void ButtonCallback(Button *Sender, const Event::ArgVector& Args) {
printf("Button clicked! (%s)\n", Sender->GetID());

}

void SwitchCallback(SwitchButton *Sender, const Event::ArgVector& Args) {
switch (Sender->GetSwitchState()) {

case true:
printf("Switch is ON! (%s)\n", Sender->GetID());
break;

default:
printf("Switch is OFF! (%s)\n", Sender->GetID());

}
}

Add them to the callbacks container:

displayManager->AddCallbackToContainer("ButtonCallback",␣
→˓(grvl::Event::CallbackPointer)ButtonCallback);
displayManager->AddCallbackToContainer("SwitchCallback",␣

(continues on next page)

4

(continued from previous page)

→˓(grvl::Event::CallbackPointer)SwitchCallback);
/*^^^^ choose a callback name */

3.2.2 JavaScript
Create a file with JavaScript callbacks, e.g.:

// callbacks.js

function ButtonCallback(caller) {
const buttonId = caller.name
Print("Button clicked! (" + buttonId + ")")

}

function SwitchCallback(caller) {
const callerName = caller.name
if (caller.switchState) {

Print("Switch is ON! (" + callerName + ")")
} else {

Print("Switch is OFF! (" + callerName + ")")
}

}

Then include it in your application’s XML layout:

<script src="callbacks.js"></script>

You can specify a non-default working directory for JavaScript files with:

JSEngine::SetSourceCodeWorkingDirectory("Scripts/JavaScript/");

See JavaScript documentation for further reference.

3.2.3 Binding callbacks
Bind callbacks to GUI components in XML by referencing the callback name:

<Button id="test_button" x="0" y="0" width="100" height="100" onClick=
→˓"ButtonCallback" text="TEST" />
<SwitchButton id="test_switch" x="500" y="500" width="150" height="100"␣
→˓onSwitchON="SwitchCallback" onSwitchOFF="SwitchCallback" />

3.3 Popups
Adding an element in XML with a callback to show a popup:

<Button id="btn" x="0" y="0" width="150" height="100" onClick="ShowPopup('example_
→˓popup')" text="Show Popup" />

Adding a popup in XML (with an element closing it on callback):

Antmicro 5

<Popup id="example_popup" x="0" y="0" width="300" height="200">
<button id="close_popup_btn" x="100" y="10" width="100" height="50" onClick=

→˓"ClosePopup" text="Close" />
<label id="popup_label" font="roboto-medium" x="0" y="100" width="300" height=

→˓"50" text="This is a Popup." />
</Popup>

3.4 Adding images and fonts

displayManager->AddFontToFontContainer("my_font", new Font(path_to_font));
displayManager->AddImageContentToContainer("my_image", new␣
→˓ImageContent(ImageContent::FromPNG(path_to_image)));

Antmicro 6

CHAPTER

FOUR

GENERAL API REFERENCE

class Manager

grvl manager class.

This class is used as an entry point for all operations invoked on the library.

Public Functions

uint32_t GetWidth() const

Returns
Width of the display in pixels.

uint32_t GetHeight() const

Returns
Height of the display in pixels.

Manager &SetTransparency(float value, uint32_t milliseconds)
Sets transparency. TODO - Adjust the description

ò Remark

Calling this method will invoke registered callback called ‘set_layer_transparency’
with provided argument. It does not change internal state of a library.

Parameters

float value
Transparency value.

Manager &SetActiveScreen(const char *activeScreenId, int8_t direction)
Changes currently displayed screen with optional animation.

Parameters

const char *activeScreenId
Identifier of a screen to display.

7

int8_t direction
Direction of animation (-1 = to the left, 1 = to the right, 0 = no
animation)

Manager &SetLoadingImage(const Image &image)
Sets an image that is displayed while the application is loading its resources.

ò Remark

In order to switch from loading to normal state, application should call Initializa-
tionFinished method.

Parameters

const Image &image
Reference to image object that should be displayed when loading.

Manager &SetBackgroundImage(const Image &image)
Sets image that is displayed below screens.

Parameters

const Image &image
Reference to the image to display.

Manager &SetCollectionImage(const Image &image)
Sets image that is displayed as screen collection indicator.

Parameters

const Image &image
Reference to the image to display.

Manager &SetBackgroundColor(uint32_t color)
Sets background color for underlying layer.

ò Remark

Calling this method will invoke registered callback called ‘set_background_color’
with provided argument. It does not change internal state of a library.

Parameters

uint32_t color
Background color in format acceptable by the provided callback.

void ProcessTouchPoint(bool touched, uint32_t touchX, uint32_t touchY)
Handles touch event.

Parameters

Antmicro 8

bool touched
Indicates if the display is touched.

uint32_t touchX
Position in axis X where the touch event was detected.

uint32_t touchY
Position in axis Y where the touch event was detected.

void ShowPopup(const char *Style)
Displays pop-up window.

Parameters

const char *Style
Name of the style defined in XML document.

void ShowKeyboard(TextInput *destinationInput)
Displays keyboard pop-up window if defined.

void SwitchKeyboardKeys()

Switches keyboard pop-up keys.

void ClosePopup()

Closes last pop-up window.

void InitializationFinished()

Switches library to normal state when screens are displayed.

ò Remark

Before calling this method loading image (if defined) is displayed.

AbstractView *GetScreen(const char *id)
Gets screen based on its name.

Parameters

const char *id
Name of the screen.

Returns
Pointer to a screen or NULL if not found.

AbstractView *GetScreen(int id)
Gets screen based on its location.

Parameters

int id
Numerical identifier of a screen (zero-based).

Returns
Pointer to the screen or NULL if not found.

Antmicro 9

Manager &AddImageContentToContainer(string name, ImageContent *image)
Registers image content in content manager.

The image content will be accessible for other components by the provided name.

ò Remark

It is advised to use content manager when image content is shared by different
components, as it will save memory.

Parameters

string name
Image content’s identifier.

ImageContent *image
Image content object.

Manager &BindImageContentToImage(const string &contentName, Image *image)
Binds registered image content to an image object.

Parameters

const string &contentName
Identifier of the content.

Image *image
Image object.

Manager &AddCallbackToContainer(const string &name, Event::CallbackPointer
Callback)

Registers callback method for an event.

ò Remark

This method filters out empty callbacks (i.e., NULLs).

Parameters

const string &name
Identifier of an event that should invoke the callback.

Event::CallbackPointer Callback
Callback that should be called on event.

Event GetOrCreateCallback(const string &callbackFunctionName, const Event::ArgVector
&callbackArgs)

Tries to search if there is callback defined with C/C++ code (added by AddCall-
backToContainer), if not then it creates new one that will call JavaScript code with
provided constant args.

Antmicro 10

Parameters

const string &callbackFunctionName
Identifier of a function invoked by the callback.

const Event::ArgVector &callbackArgs
Constant args that will be passed as callback function arguments

Manager &AddFontToFontContainer(const string &name, Font *font)
Register font in content manager.

The font will be accessible for other components by the provided name.

ò Remark

It is advised to use content manager when font is used by multiple components,
as it will save memory.

Parameters

const string &name
Font’s identifier.

Font *font
Font object.

int32_t BuildFromXML(const char *filename)
Loads screens from XML file.

Parameters

const char *filename
Path to the file with screens definition.

Returns
Result of parsing the file (0 = OK, -1 = there was an error)

void Draw()

Redraws content of a display based on current state of components.

void MainLoopIteration()

Executes an iteration of processing loop.

This method handles pop-up windows, processes events and redraw screen if needed.

Manager &SetExternalContentRequestCallback(ContentManager::ContentCallback
requestCallback)

Registers method that is called when request for external content is issued by the
library.

Parameters

ContentManager::ContentCallback requestCallback
Pointer to the method to call.

Antmicro 11

class KeyData

class ImageContent

Represents content of an image loaded into memory.

struct FromJPEG : public grvl::ImageContent::FromPNG

struct FromPNG

Subclassed by grvl::ImageContent::FromJPEG, grvl::ImageContent::FromRAW

struct FromRAW : public grvl::ImageContent::FromPNG

Antmicro 12

CHAPTER

FIVE

XML REFERENCE

5.1 XML validity
A schema is available in grvl along with an example that it validates. To check the validity, use
an external tool, for example xmllint.

$ xmllint --schema <path_to_schema.xsd> <path_to_my_xml_grvl_file.xml>

5.2 How to construct a grvl XML document?
First define the root of the document.

<doc>
<!-- screens/special components -->

</doc>

Then include the screens/special components in the document.

5.3 Generic component/container attributes
Each component has the following attributes:

• id

• x (absolute, in pixels)

• y (absolute, in pixels)

• width

• height

• visible (true/false)

• foregroundColor

• activeForegroundColor

• backgroundColor

• activeBackgroundColor

• borderColor

• activeBorderColor

13

• borderType (one of: none, box, top, right, bottom, left)

• borderArcRadius

• onClick (callback)

• onPress (callback)

• onRelease (callback)

Containers can also be specified as selection, which makes it a single-choice container, mean-
ing that only one child component can be active and will remain active until another component
from that container is activated.

5.4 Generic screen attributes
Each screen is a container, so it has all of the attributes from the previous section as well as:

• onSlideToLeft (callback)

• onSlideToRight (callback)

• onLongPress (callback)

• onLongPressRepeat(callback)

• collection (string)

• globalPanelVisible (true/false)

It can also contain <key> that can have the following attributes:

• id

• onPress

• onLongPress (callback)

• onLongPressRepeat(callback)

• onRelease

5.5 Special attributes

5.5.1 Colors
Uses the #aarrggbb format color.

5.5.2 Alignment
One of: Center, Left, Right.

5.5.3 Border type
One of: none, box, top, right, bottom, left.

Antmicro 14

5.6 List of components/containers

5.6.1 Label
Attributes

• text

• font

• textColor

• alignment

Example

<label id="popup_label" font="roboto-medium" x="0" y="100" width="300" height="50
→˓" text="This is a label." />

5.6.2 Button
Attributes

• text

• font

• image

• textColor

• activeTextColor

• icoChar

• icoFont

• icoColor

• onLongPress

• onLongPressRepeat

Example

<button id="close_popup_btn" x="100" y="10" width="100" height="50"␣
→˓backgroundColor="#ffffffff" textColor="#ff0000ff" activeTextColor="#ffff00ff"␣
→˓onClick="ClosePopup" text="Close" font="roboto-medium" />

5.6.3 Clock
Attributes

• font

• alignment

• onRelease (callback)

• foregroundColor

Antmicro 15

• seconds (true/false)

Example

<clock id="test_clock" x="150" y="10" width="100" height="100" font="roboto-medium
→˓" foregroundColor="#fffff000" seconds="true" />

5.6.4 Slider
Attributes

• frameColor

• selectedFrameColor

• barColor

• activeBarColor

• activeScrollColor

• maxValue

• minValue

• keepBoundaries

• isDiscrete

• division

• font

• image

• onValueChange

Example

<slider id="vertical_slider" x="300" y="10" width="20" height="100" scrollColor="
→˓#ffff0000" activeBarColor="#ff00ff00" />

5.6.5 ListItem
Attributes

• text

• font

• description

• descriptionFont

• ActiveTextColor

• descriptionColor

• activeDescriptionColor

• image

Antmicro 16

• additionalImage

• roundingImage

• onLongPress

• onLongPressRepeat

• type (one of: StdListField, LeftArrowField, RightArrowField, EmptyField, Dots, DoubleIm-
ageField, AlarmField)

Example

<ListItem backgroundColor="#ffff0000" id="item_1" height="50" type="StdListField"␣
→˓text="first" textColor="#ffffffff" font="roboto-medium" />

5.6.6 ProgressBar
Attributes

• progressBarColor

Example

<ProgressBar id="progress_bar" x="90" y="60" width="50" height="10"␣
→˓progressBarColor="#ffffff00" />

5.6.7 CircleProgressBar
Attributes

• progressBarColor

• startColor

• endColor

• startAngle

• endAngle

• radius

• thickness

• staticGradient

Example

<CircleProgressBar id="circle_progress_bar" x="175" y="120" width="50" height="50
→˓" radius="20" thickness="5" startColor="#fffcba03" endColor="#ffa903fc" />

5.6.8 SwitchButton
Attributes

Derives all attributes from Button with the addition of:

Antmicro 17

• onSwitchON - callback executed when switching to active state

• onSwitchOFF - callback executed when switching to inactive state

• stateIndicatorWidth/stateIndicatorHeight - size dimensions of state indicator

• stateIndicatorArcRadius - arc radius of state indicator

Example

<SwitchButton id="test_switch" x="0" y="60" width="80" height="50"␣
→˓stateIndicatorArcRadius="5" stateIndicatorWidth="20" stateIndicatorHeight="20"␣
→˓foregroundColor="#fffcba03" backgroundColor="#ffffffff" font="roboto"␣
→˓onSwitchON="SwitchCallback" onSwitchOFF="SwitchCallback" />

5.6.9 Checkbox
Attributes

Derives all attributes from SwitchButton, but renders its state indicator from width and height
size dimensions, instead of state indicator parameters.

Example

<Checkbox id="active" x="0" y="0" width="18" height="18" backgroundColor="
→˓#FFAAAAAA" activeBackgroundColor="#FFFFFFFF" onClick="NotifyAboutStateChange" />

5.6.10 Image
Attributes

• contentId

Example

<image contentId="minus" x="253" y="131" />

5.6.11 GridRow
Example

<GridRow id="row_1" backgroundColor="#ffff0000">
<button id="row_1_btn_1" text="1" font="roboto-medium" width="50" height=

→˓"50" backgroundColor="#ff00ffff" />
<button id="row_1_btn_2" text="2" font="roboto-medium" width="50" height=

→˓"50" backgroundColor="#ffff00ff" />
</GridRow>

5.6.12 Division
Component designed to be used as a container for other components, with the purpose of
making XML layout clean and well-organized. It has a similar purpose to HTML’s div.

Antmicro 18

Example

<Division x="0" y="0" width="128" height="32" backgroundColor="#FF0E0F10" >
<Button id="first" text="First" x="0" y="0" width="32" height="32" font=

→˓"roboto" backgroundColor="#FF0E0F10" textColor="#FF9EA2A6" />
<Button id="second" text="Second" x="42" y="0" width="32" height="32" font=

→˓"roboto" backgroundColor="#FF0E0F10" textColor="#FF9EA2A6" />
<Button id="third" text="Third" x="86" y="0" width="32" height="32" font=

→˓"roboto" backgroundColor="#FF0E0F10" textColor="#FF9EA2A6" />
</Division>

5.6.13 Separator
Used for horizontal separation of content.

Example

<Separator id="separator" x="0" y="20" width="128" foregroundColor="#FF2E2E2E" />

5.7 List of screens

5.7.1 GridView
Arranges its chilren elements in a grid layout.

Attributes

• overscrollEnabled

• overscrollHeight

• scrollingEnabled

• overscrollColor

• elementWidth

• elementHeight

• verticalOffset

Example

<GridView id="grid" x="0" y="0" width="140" height="140" backgroundColor="
→˓#FF0A0A0A" elementWidth="40" elementHeight="40" horizontalOffset="5"␣
→˓verticalOffset="5" selection="true" >

<GridRow id="monthdays1" >
<button id="0" text="0" font="mona14" backgroundColor="#FF0A0A0A"␣

→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

<button id="1" text="1" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

(continues on next page)

Antmicro 19

(continued from previous page)

<button id="2" text="2" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

</GridRow>

<GridRow id="monthdays2" >
<button id="3" text="3" font="mona14" backgroundColor="#FF0A0A0A"␣

→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

<button id="4" text="4" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

<button id="5" text="5" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

</GridRow>

<GridRow id="monthdays3" >
<button id="6" text="6" font="mona14" backgroundColor="#FF0A0A0A"␣

→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

<button id="7" text="7" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

<button id="8" text="8" font="mona14" backgroundColor="#FF0A0A0A"␣
→˓activeBackgroundColor="#FF0059EC" textColor="#FFECEDEE" onClick="SomeCallback" /
→˓>

</GridRow>

</GridView>

5.7.2 ListView
Arranges its chilren elements into a list.

Attributes

• overscrollEnabled

• overscrollHeight

• splitLineColor

• overscrollColor

• scrollIndicatorColor

Example

<ListView id="list" x="0" y="0" width="200" height="200">

<ListItem backgroundColor="#ffff0000" id="item1" height="50" type=
(continues on next page)

Antmicro 20

(continued from previous page)

→˓"StdListField" text="first" textColor="#ffffffff" font="mona12" />
<ListItem backgroundColor="#ff00ff00" id="item2" height="50" type=

→˓"StdListField" text="second" textColor="#ffffffff" font="mona12" />
<ListItem backgroundColor="#ff0000ff" id="item3" height="50" type=

→˓"StdListField" text="third" textColor="#ffffffff" font="mona12" />

</ListView>

5.7.3 ScrollPanel
Allows to arrange its children elements inside the container in a custom way, defined by each
component’s x and y.

Attributes

• overscrollEnabled

• overscrollHeight

• splitLineColor

• overscrollColor

• scrollIndicatorColor

Example

<ScrollPanel id="scroll" x="0" y="0" width="100" height="100" overscrollBarColor="
→˓#FF0E0F10" >

<Button id="add" text="Add" font="mona12" x="5" y="5" width="40" height="40"␣
→˓textColor="#FFFF575E" onClick="SomeCallback" />

<Button id="new" text="New" font="mona12" x="55" y="5" width="40" height="40"␣
→˓textColor="#FFFF575E" onClick="SomeCallback" />

<Button id="cancel" text="Cancel" font="mona12" x="5" y="50" width="90"␣
→˓height="40" textColor="#FFFF575E" onClick="SomeCallback" />

</ScrollPanel>

5.7.4 Other screens
Screens with no special attributes

CustomView

<customView id="start" backgroundColor="#FF4287F5">
<button id="test_button" image="button_image" x="10" y="10" width="100"␣

→˓height="100" textColor="#ff00ff00" activeTextColor="#ffff00ff" onClick=
→˓"ButtonCallback" text="TEST" font="roboto-medium" />

<clock id="test_clock" x="150" y="10" width="100" height="100" font="roboto-
→˓medium" foregroundColor="#fffff000" seconds="true" />

(continues on next page)

Antmicro 21

(continued from previous page)

<slider id="vertical_slider" x="300" y="10" width="20" height="100"␣
→˓scrollColor="#ffff0000" activeBarColor="#ff00ff00" />

<slider id="horizontal_slider" x="340" y="10" width="100" height="20"␣
→˓scrollColor="#fffcba03" activeBarColor="#ffa903fc" />
</customView>

Header

<header height="50" backgroundColor="#ff000000">
<label id="h_label" text="Header (Label)" font="roboto-medium" alignment=

→˓"Center" x="0" y="0" width="800" height="50" />
</header>

Popup

<popup id="test_popup" backgroundColor="#ff000000" x="250" y="200" width="300"␣
→˓height="200">

<button id="close_popup_btn" x="100" y="10" width="100" height="50"␣
→˓backgroundColor="#ffffffff" textColor="#ff0000ff" activeTextColor="#ffff00ff"␣
→˓onClick="ClosePopup" text="Close" font="roboto-medium" />

<label id="popup_label" font="roboto-medium" x="0" y="100" width="300"␣
→˓height="50" text="This is a Popup." />
</popup>

5.8 List of special components

5.8.1 guiConfig
Attributes

• touchRegionModificator

• dotColor

• dotActiveColor

• dotDistance

• dotRadius

• dotYPos

• debugDot

Example

<guiConfig dotColor="#ffffffff"></guiConfig>

Antmicro 22

5.8.2 stylesheet (UNIMPLEMENTED)
The current version of grvl only implements parsing, the stylesheet is not applied.

Example

<stylesheet>
label {

bgColor: "red"
}

</stylesheet>

5.8.3 keypadMapping
Contains key elements with the following attributes:

• id

• code (int)

• repeat (int)

Example

<keypadMapping>
<key id="space" code="456" repeat="200"/>
<key id="enter" code="789" repeat="100"/>

</keypadMapping>

Antmicro 23

CHAPTER

SIX

JAVASCRIPT REFERENCE

6.1 JavaScript feature support
The JavaScript engine used in grvl is duktape. For more information about its capabilities, see
duktape docs.

6.2 How to use JavaScript with grvl?
First, prepare your JavaScript source file:

// callbacks.js

var currentDate = null

function ButtonCallback(caller) {
const buttonId = caller.name
Print("Button clicked! (" + buttonId + ")")

}

function InitializeApplication() {
currentDate = new Date()

}

Then, include it in your application’s XML layout:

<script src="callbacks.js"></script>

You can specify a non-default working directory for JavaScript files with:

grvl::JSEngine::SetSourceCodeWorkingDirectory("Scripts/JavaScript/");

You can later bind JavaScript functions to GUI components by referencing a function name in
callback parameters, e.g. onClick. The caller component will be passed in as the first argument:

<button id="button" x="10" y="140" width="200" height="80" onClick="ButtonCalback
→˓" text="I am a button" font="roboto" />

JavaScript functions can be also called from any place in code without involving GUI compo-
nents like this:

24

https://github.com/svaarala/duktape
https://github.com/svaarala/duktape?tab=readme-ov-file#introduction

grvl::JSEngine::MakeJavaScriptFunctionCall("InitializeApplication");

6.3 grvl functions available in JavaScript
You can call functions exposed by grvl to control your application from JavaScript. They are
divided into two types: globally available functions and GUI component accessors.

6.3.1 Globally available functions
These functions can be called from any place in JavaScript code:

• GetElementById(componentID) - returns component with given ID if found

• Print(message) - prints given message

• ShowPopup(popupID) - shows popup with given ID if available

• ClosePopup() - closes currently shown popup

• SetActiveScreen(screenID) - sets screen with given ID as active

• GetTopPanel() - returns top panel component

• GetBottomPanel() - returns bottom panel component

• GetPrefabById(prefabID) - returns prefab with given ID if available

6.3.2 Members
These functions can be used to access GUI component parameters or call their member func-
tions.

Properties

The simple parameters of a GUI component can be modified with properties exposed by each
component, e.g.:

Print(caller.name)

will print caller’s ID. There are other common properties such as:

• x, y, width and height for position and size dimensions respectively

• foregroundColor and backgroundColor for component’s foreground and background
color

• visibility which determines if a component is visible.

Metadata

Each component’s metadata can be accessed by calling AddMetadata(key, value) or
GetMetadata(key):

button.AddMetadata("description", "grvl is very cool")
...
const description = button.GetMetadata("description")

Antmicro 25

Cloning

GUI components can be cloned inside JavaScript code by calling:

const clone = caller.Clone()
container.AddElement(clone)

Antmicro 26

CHAPTER

SEVEN

PREFABS

Prefabs are user-defined composites of already existing GUI components and can be used to
instantiate complex structures at runtime. By using prefabs you can create new instances of
hierarchical GUI components without delving into their internals.

Prefabs can be defined in application’s XML layout:

<prefab id="event" width="95" height="60" borderType="left" >

<label id="name" text="team planning" font="mona16" x="0" y="0" width="138"␣
→˓height="35" horizontalOffset="8" textColor="#FF47A8FF" alignment="left" />

<label id="description" font="mona14" x="0" y="25" width="138" height="35"␣
→˓horizontalOffset="8" textColor="#FF47A8FF" alignment="left" visibility="false" /
→˓>

</prefab>

and then later instantiated at runtime with:

const prefab = GetPrefabById("event")
const event = prefab.Clone()
events.AddElement(event)

27

CHAPTER

EIGHT

METADATA

Metadata gives an ability to store complex data and information for later use in GUI
components. Metadata values can be accessed by calling components’ member functions
AddMetadata(key, value) and GetMetadata(key):

button.AddMetadata("description", "grvl is very cool")
...
const description = button.GetMetadata("description")

28

CHAPTER

NINE

ON-SCREEN KEYBOARD

To provide an interactive experience for the user, you can add a keyboard, along with text
inputs, to your grvl application. The keyboard can be specified in the application XML layout:

<Keyboard id="keyboard" backgroundColor="#FF0D0D0E" x="0" y="430" width="1024"␣
→˓height="338">

<KeyboardKey id="g" text="g" font="mona26" secondaryText="a"␣
→˓secondaryTextFont="mona14" x="25" y="27" width="75" height="62" backgroundColor=
→˓"#FF191A1C" textColor="#FFECEDEE" secondaryTextColor="#FF191A1C" onClick=
→˓"AppendFromKeyboardKey" />

<KeyboardKey id="r" text="r" font="mona26" secondaryText="n"␣
→˓secondaryTextFont="mona14" x="115" y="27" width="75" height="62"␣
→˓backgroundColor="#FF191A1C" textColor="#FFECEDEE" secondaryTextColor="#FF191A1C
→˓" onClick="AppendFromKeyboardKey" />

<KeyboardKey id="v" text="v" font="mona26" secondaryText="t"␣
→˓secondaryTextFont="mona14" x="205" y="27" width="75" height="62"␣
→˓backgroundColor="#FF191A1C" textColor="#FFECEDEE" secondaryTextColor="#FF191A1C
→˓" onClick="AppendFromKeyboardKey" />

<KeyboardKey id="l" text="l" font="mona26" secondaryText="m"␣
→˓secondaryTextFont="mona14" x="295" y="27" width="75" height="62"␣
→˓backgroundColor="#FF191A1C" textColor="#FFECEDEE" secondaryTextColor="#FF191A1C
→˓" onClick="AppendFromKeyboardKey" />

</Keyboard>

You can specify any layout you require by defining individual keys. The keyboard will be shown
whenever a text input is used.

<TextInput id="name" basicText="Name" font="mona26"
x="0" y="0" width="426" height="34"
borderType="box" borderArcRadius="12"
backgroundColor="#FF191A1C" borderColor="#FF2C2E32" textColor="#FF9EA2A6" />

29

CHAPTER

TEN

WIDGET API REFERENCE

class Label : public grvl::Component

Widget displaying static text.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible (default: true)

• text - text to display on the label (default: none)

• font - text font (default: normal)

• textColor - text color (default: black)

• backgroundColor - widget background color (default: transparent)

• frameColor - widget frame color (default: transparent)

• alignment - horizontal alignment of the text (default: center)

Subclassed by grvl::Clock

Public Functions

const char *GetText()

Returns
Label’s text.

class Button : public grvl::AbstractButton

Represents rectangle button.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

30

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

• text - caption text to display on the widget (default: “”)

• font - caption text font (default: “normal”)

• textColor - caption text color (default: black)

• activeTextColor - caption text color while pressed (default: textColor)

• icoChar - single-character icon for the button (default: none)

• icoFont - single-character icon font (default: “normal”)

• icoColor - single-character icon color (default: textColor)

• activeIcoColor - single-character icon color while pressed (default: textColor)

• backgroundColor - button background color (default: transparent)

• activeBackgroundColor - button background color while pressed (default: back-
groundColor)

• frameColor - button frame color (default: transparent)

• text_top_offset - caption text top position offset

• image - identifier of image content to display

• image_x - image position on x axis in pixels (setting to -1 will center the image)

• image_y - image position on y axis in pixels (setting to -1 will center the image)

XML events:

• onClick - event invoked when touch is released, but only when it has not left widget
boundaries since pressing and long press was not reported

• onPress - event invoked when touch is detected within widget boundaries

• onRelease - event invoked when touch is released within widget boundaries or when
it leaves the boundaries

• onLongPress - event invoked when the widget is pressed for longer than a second

• onLongPressRepeat - event invoked periodically (every half a second) while the wid-
get is being pressed

Subclassed by grvl::KeyboardKey, grvl::TextInput

class Clock : public grvl::Label

Widget displaying current time.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

Antmicro 31

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

• foregroundColor - text color (default: black)

• backgroundColor - background color (default: transparent)

• font - text font (default: normal)

• alignment - horizontal text alignment (default: centered)

XML events:

• onClick - event invoked when touch is released, but only when it has not left widget
boundaries since pressing

• onPress - event invoked when touch is detected within widget boundaries

• onRelease - event invoked when touch is released within widget boundaries or when
it leaves the boundaries

class Image : public grvl::Component

Widget displaying an image.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• visible - indicates if the widget is visible

• contentId - identifier of image content to display (default: none)

ò Remark

Width and height of a widget are deduced from image content.

class ProgressBar : public grvl::Component

Rectangle progress bar widget.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

Antmicro 32

• progressBarColor - progress bar color (default: transparent)

• backgroundColor - background color (default: transparent)

Subclassed by grvl::CircleProgressBar

class CircleProgressBar : public grvl::ProgressBar

Represents circular progress bar widget.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

• startAngle - angle at which the ring starts in degrees (default: 0)

• endAngle - angle at which the ring ends in degrees (default: 360)

• radius - outer rim of the ring radius in pixels (default: 0)

• thickness - ring thickness in pixels (default: 0)

• staticGradient - indicates if static gradient method should be used instead of propor-
tional one (default: true)

• startColor - gradient color at the beginning of the ring in ARGB8888 format (default:
transparent)

• endColor - gradient color at the end of the ring in ARGB8888 format (default: trans-
parent)

• backgroundColor - ring background color

class GridView : public grvl::VerticalScrollView

Grid view widget.

This is a layout widget which organizes the screen by displaying inner widgets on a grid.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

• scrollingEnabled - indicates if scrolling is enabled (default: false)

Antmicro 33

• overscrollEnabled - indicates if scrolling beyond top/bottom is possible (default:
false)

• overscrollColor - overscrolled area color (default: light gray)

• overscrollHeight - overscrolled area height in pixels (default: 50)

• scrollIndicatorColor - scroll indicator color (default: transparent)

• elementWidth - grid element width in pixels (default: 0)

• elementHeight - grid element height in pixel (default: 0)

• verticalOffset - vertical offset of grid elements (default: 0)

• globalPanelVisible - indicates if global panel is visible (default: true)

• backgroundColor - widget background color (default: transparent)

• collection - collection of elements

XML events:

• onSlideLeft - event invoked when widget is scrolled to the left

• onSlideRight - event invoked when widget is scrolled to the right

ò Remark

XML node describing this widget can contain child nodes with components of type:

• gridRow

• panel (as a header)

Public Functions

virtual void SetBackgroundColor(uint32_t color)
Sets component’s background color.

Parameters

uint32_t color
Desired color in ARGB8888 format.

class GridRow : public grvl::Container

Widget representing single row of a grid displayed by GridRow. The widget can contain
buttons only.

class CustomView : public grvl::AbstractView

Represents a screen type supporting any element placement except for listItems and
gridRows.

class ListView : public grvl::VerticalScrollView

Vertical list view widget.

Antmicro 34

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

• overscrollEnabled - indicates if scrolling beyond top/bottom is possible (default:
false)

• overscrollColor - overscrolled area color (default: light gray)

• overscrollHeight - overscrolled area height in pixels (default: 50)

• scrollIndicatorColor - scroll indicator color (default: transparent)

• splitLineColor - color of the line drawn between list elements (default: transparent)

• globalPanelVisible - indicates if global panel is visible (default: true)

• backgroundColor - widget background color (default: transparent)

• collection - collection of elements

XML events:

• onSlideLeft - event invoked when widget is scrolled to the left

• onSlideRight - event invoked when widget is scrolled to the right

ò Remark

XML node describing this widget can contain child nodes with components of type:

• listItem

• panel (as a header)

class ListItem : public grvl::AbstractButton

Widget representing an element of a list displayed by ListView.

XML events:

• id - widget identifier

• height - widget height in pixels

• visible - indicates if the widget is visible

• type - list item type; available values: StdListField, LeftArrowListField, RightAr-
rowListField, EmptyField, Dots, DoubleImageField

• text - caption text (default: none)

Antmicro 35

• description - description text (default: none)

• font - caption text font (default: “normal”)

• descriptionFont - description text font (default: “small”)

• textColor - caption text color (default: black)

• activeTextColor - caption text color when pressed (default: textColor)

• descriptionColor - description text color (default: black)

• activeDescriptionColor - description text color when pressed (default: description-
Color)

• backgroundColor - background color (default: transparent)

• activeBackgroundColor - background color when pressed (default: background-
Color)

• image - image content identifier

• additionalImage - second image content identifier

Public Functions

void SetType(ItemType type)
Sets type of the list item.

Parameters

ItemType type
New list item’s type.

Image *GetAdditionalImagePointer()

Returns
Pointer to the second image set for this item or NULL.

class Panel : public grvl::Container

Represents panel widget.

Panel is a fixed top part of a screen that displays widgets that should be always visible.

XML parameters:

• id - identifier of a widget

• height - widget height in pixels (default: 30)

• backgroundColor - background color (default: transparent)

ò Remark

XML node describing this widget can contain child nodes with components of type:

• guiClock

• image

Antmicro 36

• textView

• button

• switch

• scrollBar

• listItem

• progressBar

class SwitchButton : public grvl::AbstractButton

Represents switch (flip-flop) button.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

• height - widget height in pixels

• visible - indicates if the widget is visible

XML events:

• onClick - event invoked when touch is released, but only when it has not left the
boundaries of widget since pressing and long press was not reported

• onPress - event invoked when touch is detected in the boundaries of the widget

• onRelease - event invoked when touch is released in the boundaries of the widget

• onLongPress - event invoked when the widget is pressed for longer than a second

• onLongPressRepeat - event invoked periodically (every half a second) while the wid-
get is being pressed

• onSwitchON - event invoked when switch button is switched to ON mode

• onSwitchOFF - event invoked when switch button is switched to OFF mode

Subclassed by grvl::Checkbox

class Slider : public grvl::Component

Horizontal scroll bar widget.

XML parameters:

• id - widget identifier

• x - widget position on x axis in pixels

• y - widget position on y axis in pixels

• width - widget width in pixels

Antmicro 37

• height - widget height in pixels

• visible - indicates if the widget is visible (default: true)

• backgroundColor - background color (default: transparent)

• activeBackgroundColor - background color when pressed (default: background-
Color)

• frameColor - frame color (default: transparent)

• selectedFrameColor - frame color when pressed (default: frameColor)

• barColor - scroll bar background color (default: white)

• activeBarColor - scroll bar background color when pressed (default: barColor)

• scrollColor - scrolling element color (default: blue)

• activeScrollColor - scrolling element color when pressed (default: scrollColor)

• minValue - minimal value (the one on the left) (default: 0)

• maxValue - maximal value (the one on the right) (default: 100)

• image - identifier of image content replacing standard scrolling element

XML events:

• onClick - event invoked when touch is released, but only when it has not left the
boundaries of widget since pressing

• onPress - event invoked when touch is detected in the boundaries of the widget

• onRelease - event invoked when touch is released

• onValueChange - event invoked when the scrolling element is moved to another
value

Public Functions

float GetValue() const

Returns
Scroll bar’s current position.

Antmicro 38

INDEX

G
grvl::Button (C++ class), 30
grvl::CircleProgressBar (C++ class), 33
grvl::Clock (C++ class), 31
grvl::CustomView (C++ class), 34
grvl::GridRow (C++ class), 34
grvl::GridView (C++ class), 33
grvl::GridView::SetBackgroundColor (C++

function), 34
grvl::Image (C++ class), 32
grvl::ImageContent (C++ class), 12
grvl::ImageContent::FromJPEG (C++ struct),

12
grvl::ImageContent::FromPNG (C++ struct),

12
grvl::ImageContent::FromRAW (C++ struct),

12
grvl::Label (C++ class), 30
grvl::Label::GetText (C++ function), 30
grvl::ListItem (C++ class), 35
grvl::ListItem::GetAdditionalImagePointer

(C++ function), 36
grvl::ListItem::SetType (C++ function), 36
grvl::ListView (C++ class), 34
grvl::Manager (C++ class), 7
grvl::Manager::AddCallbackToContainer

(C++ function), 10
grvl::Manager::AddFontToFontContainer

(C++ function), 11
grvl::Manager::AddImageContentToContainer

(C++ function), 9
grvl::Manager::BindImageContentToImage

(C++ function), 10
grvl::Manager::BuildFromXML (C++ func-

tion), 11
grvl::Manager::ClosePopup (C++ function),

9
grvl::Manager::Draw (C++ function), 11
grvl::Manager::GetHeight (C++ function), 7
grvl::Manager::GetOrCreateCallback (C++

function), 10

grvl::Manager::GetScreen (C++ function), 9
grvl::Manager::GetWidth (C++ function), 7
grvl::Manager::InitializationFinished

(C++ function), 9
grvl::Manager::KeyData (C++ class), 11
grvl::Manager::MainLoopIteration (C++

function), 11
grvl::Manager::ProcessTouchPoint (C++

function), 8
grvl::Manager::SetActiveScreen (C++ func-

tion), 7
grvl::Manager::SetBackgroundColor (C++

function), 8
grvl::Manager::SetBackgroundImage (C++

function), 8
grvl::Manager::SetCollectionImage (C++

function), 8
grvl::Manager::SetExternalContentRequestCallback

(C++ function), 11
grvl::Manager::SetLoadingImage (C++ func-

tion), 8
grvl::Manager::SetTransparency (C++ func-

tion), 7
grvl::Manager::ShowKeyboard (C++ func-

tion), 9
grvl::Manager::ShowPopup (C++ function), 9
grvl::Manager::SwitchKeyboardKeys (C++

function), 9
grvl::Panel (C++ class), 36
grvl::ProgressBar (C++ class), 32
grvl::Slider (C++ class), 37
grvl::Slider::GetValue (C++ function), 38
grvl::SwitchButton (C++ class), 37

39

	What is grvl?
	Quickstart
	Linking (CMAKE)
	Standalone
	Zephyr

	Minimal example

	Examples
	Animating values
	Callbacks
	C++
	JavaScript
	Binding callbacks

	Popups
	Adding images and fonts

	General API reference
	XML reference
	XML validity
	How to construct a grvl XML document?
	Generic component/container attributes
	Generic screen attributes
	Special attributes
	Colors
	Alignment
	Border type

	List of components/containers
	Label
	Attributes
	Example

	Button
	Attributes
	Example

	Clock
	Attributes
	Example

	Slider
	Attributes
	Example

	ListItem
	Attributes
	Example

	ProgressBar
	Attributes
	Example

	CircleProgressBar
	Attributes
	Example

	SwitchButton
	Attributes
	Example

	Checkbox
	Attributes
	Example

	Image
	Attributes
	Example

	GridRow
	Example

	Division
	Example

	Separator
	Example

	List of screens
	GridView
	Attributes
	Example

	ListView
	Attributes
	Example

	ScrollPanel
	Attributes
	Example

	Other screens
	CustomView
	Header
	Popup

	List of special components
	guiConfig
	Attributes
	Example

	stylesheet (UNIMPLEMENTED)
	Example

	keypadMapping
	Example

	JavaScript reference
	JavaScript feature support
	How to use JavaScript with grvl?
	grvl functions available in JavaScript
	Globally available functions
	Members
	Properties
	Metadata
	Cloning

	Prefabs
	Metadata
	On-screen keyboard
	Widget API Reference
	Index

