
Antmicro

Pipeline Manager

2025-02-10

CONTENTS

1 Introduction 1

2 Pipeline Manager 2
2.1 Prerequisites . 3
2.2 Building and running . 3

3 Specification format 7
3.1 Format description . 7
3.2 Example . 18

4 Dataflow format 22
4.1 Format description . 22
4.2 Example dataflow . 27

5 Front-end features 34
5.1 Graph manipulation . 35
5.2 Settings . 37
5.3 Notifications . 38
5.4 Full screen . 39
5.5 Editor menu . 39
5.6 Working with the server . 40
5.7 URL parameters for the frontend . 41
5.8 Passing JSON objects directly . 42
5.9 Testing the front-end features . 42

6 Communication with an external application 43
6.1 Communication protocol . 43
6.2 Response messages types - sent by the external application 44
6.3 API Specification . 45
6.4 Implementing a Python-based client for Pipeline Manager 54

7 Sample third-party server 58

8 Specification builder 59
8.1 Example usage of the SpecificationBuilder . 59
8.2 SpecificationBuilder documentation . 63

9 Dataflow graph builder 72
9.1 Examples of GraphBuilder usage . 72
9.2 Specification of GraphBuilder . 74

i

9.3 Specification of DataflowGraph . 76
9.4 Specification of Node . 78
9.5 Specification of Interface . 79
9.6 Specification of Connection . 80
9.7 Specification of Property . 80

10 Dataflow and Specification format changelog 81
10.1 20240723.13 . 81
10.2 20230523.12 . 82
10.3 20230830.11 . 82
10.4 20230824.10 . 83
10.5 20230824.9 . 83
10.6 20230818.8 . 83
10.7 20230817.7 . 83
10.8 20230809.6 . 84
10.9 20230619.5 . 84
10.1020230619.4 . 84
10.1120230619.3 . 84
10.1220230615.2 . 85
10.1320230615.1 . 85

11 Demonstration of the frontend 86

Index 92

ii

CHAPTER

ONE

INTRODUCTION

Pipeline Manager is a data-based web application for creating, visualizing and managing
pipelines for various applications.

This documentation contains the following chapters:

• Pipeline Manager - a quickstart guide for the project

• Specification format - description of the node specification format

• Dataflow format - graph description format overview

• Front-end features - description of front-end features and front end testing

• Communication with an external application - external application integration overview

• Sample third-party server - describes how to configure server for testing frontend features

• Specification Builder - describes the Python’s SpecificationBuilder module for construct-
ing the specification.

• Graph Builder - describes the Python’s GraphBuilder class for constructing and manipulat-
ing the dataflow graph.

• Dataflow and specification format changelog - lists changes and versions in the format of
dataflow and specification files

• Front end demo - Pipeline Manager’s front end demonstration.

1

CHAPTER

TWO

PIPELINE MANAGER

Copyright (c) 2022-2025 Antmicro

Pipeline Manager is a data-based, application-agnostic web application for creating, visualizing
and managing dataflows in various applications. It does not assume any properties of the
application it is working with, thanks to which fast integration with various formats is possible.

Pipeline Manager documentation | Demo application

It provides functionality for:

• visualizing and editing dataflows,

• saving and loading dataflows,

• communicating with an external application to delegate advanced validation, execution
of the defined graph and conversions to and from native formats of the graphs.

Pipeline Manager aims to simplify the process of developing graph-based graphical interfaces
for applications that are modular and have a graph-like nature.

2

https://www.antmicro.com
https://antmicro.github.io/kenning-pipeline-manager/
https://antmicro.github.io/kenning-pipeline-manager/_static/pipeline-manager.html?spec=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-pipeline-manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-specification.json&graph=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-pipeline-manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-dataflow.json

2.1 Prerequisites

Pipeline Manager requires npm (at least 10.8.2 version is recommended, along with Node.js
starting from 20.10.0), python and pip for installing dependencies, building and (optionally)
running - use package manager to install those packages.

The backend of the application has a list of requirements in the pyproject.toml file. They can
be installed using pip:

pip install .

All of npm modules needed for the frontend of the application are installed automatically during
build. They can be found in the ./pipeline_manager/frontend/node_modules directory after
the application is built.

2.2 Building and running

Pipeline Manager can be built in two different ways as:

• static HTML application, that can be run in a browser, without any additional backend
server,

• regular web application that is designated to communicate and cooperate with an external
application (like Kenning).

2.2.1 Static HTML application

To build Pipeline Manager as a static HTML application, in the root directory run:

./build static-html

For available flags, run:

./build static-html -h

To run the built application, open ./pipeline_manager/frontend/dist/index.html in a pre-
ferred browser. As an example, if the browser of your choice is firefox you should run:

firefox ./pipeline_manager/frontend/dist/index.html

After running Pipeline Manager you can use sample specification under ./examples/
sample_specification.json to check the visualization and editing of pipelines. Additionally,
./examples/sample_dataflow.json can be used to see how dataflows are stored.

The specification can be loaded in the webpage using the Load specification option in the
main menu. The dataflow can be loaded in the webpage using the Load graph file option in
the main menu.

What is more, the specification and the dataflow can be provided as URL arguments:

• spec - should contain URL to the specification file,

• graph - should contain URL to the dataflow file,

Antmicro 3

https://github.com/antmicro/kenning

• preview - if true, the graph is displayed in preview mode (read only, no HUD),

• include - to alter the specification from the level of URL, it is possible to provide a URL to
additional includes with this field.

For example:

firefox "https://antmicro.github.io/kenning-pipeline-manager/_static/pipeline-
→˓manager.html?spec=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-
→˓pipeline-manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-specification.json&
→˓graph=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-pipeline-
→˓manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-dataflow.json"

Will fetch and use specification and dataflow from the GitHub repository for this project. The
URLs need to be encoded.

It is possible to add a default specification JSON to the generated HTML. It just needs to be
provided as the second argument of the ./build script:

./build static-html <path-to-specification-json>

It is also possible to add a default dataflow that will be loaded on the start of the application,
e.g.:

./build static-html <path-to-specification> <path-to-dataflow>

To be able to use some additional assets, like icons for nodes, run:

./build --assets-directory <path-to-assets-dir> static-html <path-to-
→˓specification> <path-to-dataflow>

To change the title of the editor and page, use --editor-title flag, e.g.:

./build --editor-title 'Graph editor' static-html <path-to-specification> <path-
→˓to-dataflow>

For details on how to write specification, check:

• Pipeline Manager documentation

• Specification format

• Dataflow format

• Examples in examples/ directory - in the directory you can find sample specification files
(with -specification.json suffix), usually paired with supported dataflow files (with
-dataflow.json suffix)

For example, run:

./build static-html ./examples/sample-specification.json ./examples/sample-
→˓dataflow.json --output-directory ./pipeline-manager-demo

After successful build, run:

firefox ./pipeline-manager-demo/index.html

Antmicro 4

https://antmicro.github.io/kenning-pipeline-manager
https://antmicro.github.io/kenning-pipeline-manager/specification-format.html
https://antmicro.github.io/kenning-pipeline-manager/dataflow-format.html
https://github.com/antmicro/kenning-pipeline-manager/tree/main/examples

You should get a graph view similar to the one in the documentation’s demo.

2.2.2 Web application

To build Pipeline Manager to work with an external application (like Kenning), in the root
directory run:

./build server-app

For available flags, check:

./build server-app -h

In this scenario, the backend server is expected to serve the Pipeline Manager content. To do
that, in the root directory run:

./run

By default, the backend server runs on http://127.0.0.1:5000. In addition to using the sample
specification you can also connect the third-party application (e.g. Kenning), edit its pipeline,
validate it and run it.

2.2.3 Miscellaneous

Development

To run a development server which automatically recompiles the project after detecting any
changes, in ./pipeline_manager/frontend directory run:

npm run serve-static

in case of a static mode, and run:

npm run serve

in case of a regular web application mode.

Validation

Pipeline Manager also includes a validation tool you can use during specification and dataflow
development.

To validate an existing specification, run the following in the root directory:

./validate <specification-path>

To validate an existing specification and one or more dataflows, run the following in the root
directory:

./validate <specification-path> <dataflow-path> <dataflow-path> ...

Antmicro 5

https://antmicro.github.io/kenning-pipeline-manager/_static/pipeline-manager.html?spec=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-pipeline-manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-specification.json&graph=https%3A%2F%2Fraw.githubusercontent.com%2Fantmicro%2Fkenning-pipeline-manager%2Frefs%2Fheads%2Fmain%2Fexamples%2Fsample-dataflow.json
https://github.com/antmicro/kenning

Replace both specification-path and dataflow-path with the actual paths to the JSON con-
figuration file you want to validate. When running the validation tool for the first time, make
sure to include the --instal-dependencies flag.

Cleanup

To remove the installed npm dependencies and the built application, run the following in the
root directory:

./cleanup

2.2.4 Using Pipeline Manager as a Python module

To install Pipeline Manager with pip, run:

pip install -U git+https://github.com/antmicro/kenning-pipeline-manager.git

To work directly with the repository, install the module with:

pip install -e .

All Pipeline Manager scripts can then be used from the command-line interface:

pipeline_manager
usage: pipeline_manager {build,run,validate,cleanup}

Antmicro 6

CHAPTER

THREE

SPECIFICATION FORMAT

Pipeline Manager requires a JSON specification that defines the working environment. It spec-
ifies all nodes, properties, available connections, and metadata for the editor. It can be either
provided from a file or fetched from an external application.

Such a specification defining the nodes needs to be loaded through the front end in order for
you to be able to load any dataflow.

3.1 Format description

The specification needs to be provided in a JSON file. The specification consists of:

• metadata - object of type Metadata that specifies editor styling and metadata

• nodes - array that specifies valid nodes, where every element is of type Node.

• graphs - array of dataflow-like objects defining graph nodes, of type Graph.

• include - array of string objects pointing to a remote url to the specifications to include.

• includeGraphs - array of objects of type Included Graph, that specifies graph instances to
be included in the specification from a remote url.

• version - string determining version of the specification. Should be set to the newest ver-
sion described in Changelogs. Pipeline Manager uses that value to check the compatibility
of the specification with the current implementation, giving warnings about inconsistency
in versions.

Note: Graph node named New Graph Node is available by default after loading a specification.
It can be used to create new, custom graphs. That is why using this name for a graph will result
in an error.

7

3.1.1 Metadata

This object specifies additional editor options and contains the following optional properties:

• interfaces - a dictionary which defines interface and connection styling for particular
interface types. The key in the dictionary is the name of the interface type, and the value
is of type Interface style.

• allowLoopbacks - boolean value that determines whether connections with endpoints at
the same node are allowed. Default value is false.

• readonly - boolean value determining whether the editor is in read-only mode. In read-
only mode, the user cannot create or remove nodes and connections. Modification of any
properties is also disabled. The user is only allowed to load existing dataflows. Default
value is false.

• twoColumn - boolean value determining the layout of the nodes. If set to true, then input
and output sockets are both rendered in the top part of the node and properties are
displayed below. Default value is false.

• connectionStyle - string value that determines the connection style. Can choose one out
of the two options: curved or orthogonal. Default value is curved

• hideHud - boolean value determining whether UI elements should be hidden. Components
affected by this flag are: popup notifications, navigation bar and terminal window. Default
value is false

• layers - layers specifying groups of interfaces and nodes that can be hidden in the viewer
from settings level. The entries are of type Layer. By default there are no layers.

• urls - list of URL classes present in the specification and flow. It is a dictionary, where key
is the name of the URL class, and value is of type URL class specification. The given URL
classes can be referred to later in Nodes with proper link suffix.

• collapseSidebar - boolean value determining whether nodes sidebar should be collapsed
by default. Default value is true

• movementStep - Defines offset to which nodes snap in the grid. Default value is 1.

• backgroundSize - Defines size of the background grid. Default value is 100.

• layout - String specifying the name of autolayout algorithm used in placing nodes from
dataflow Default value is NoLayout

• icons - contains definition of icon classes. Icon classes are key-value pairs, where key is
the name of the icon class, and value is the URL prefix that is used to compute the actual
path.

• navbarItems - list of buttons that are displayed in the navbar in server-app mode, that
allow for calling custom procedures. The entries are of type Navbar item.

• logLevel - string specifying minimum level of verbosity notification has to have to be
displayed. It can be one of INFO, WARNING, ERROR.

An example:

"metadata": {
"interfaces": {

"Dataset": {
(continues on next page)

Antmicro 8

(continued from previous page)

"interfaceColor": "#FF00FF",
"interfaceConnectionPattern": "dashed",
"interfaceConnectionColor": "#FF0000"

}
},
"allowLoopbacks": false,
"readonly": true,
"connectionStyle": "orthogonal",
"hideHud": false,
"layers": [

{
"name": "Example Layer",
"nodeLayers": ["processing"],
"nodeInterfaces": ["BinaryImage"]

}
],
"layout": "NoLayout"

}

Layer

Layer is used to describe a set of types of nodes and interfaces. Layers can be used to hide nodes
of given types. They can be also used to hide connections for given interface types.

The layers can be enabled or disabled in editor settings.

Every layer has three properties (at least name and one of nodeLayers or nodeInterfaces need
to be defined):

• name - name of the layer displayed in the editor,

• nodeLayers (optional) - array of names of node types that belong to the layer,

• nodeInterfaces (optional) - array of names of interface types that belong to the layer.

URL class

URL class provides links with additional information for a given node. They are represented in
nodes as icons leading to a URL with additional information on nodes.

The name of the URL class is specified as key in urls entry in metadata.

The URL class parameters are following:

• name - name of the URL class, appears as hint on hover over the icon,

• icon - path to the icon representing the URL class,

• url - base URL for URL class. The suffixes for URLs are present in Node parameters.

Antmicro 9

Interface style

Interface style describes how interfaces of a given type should look like, as well as its input or
output connections. It consists of the following properties:

• interfaceColor - describes the color of the interface, should be a hexadecimal number
representing RGB values.

• interfaceConnectionPattern - describes how the connection line should look like. The
possible variants are solid, dashed and dotted.

• interfaceConnectionColor - describes the color of connection lines, should be a hexadec-
imal number representing RGB values.

Navbar item

Describes a list of custom buttons displayed in the navbar. Every element consists of the follow-
ing properties:

• name - displayed as a tooltip to the user when the button is hovered. Names have to be
unique.

• stopName - name displayed in the tooltip when the corresponding procedure is running
and is stoppable. If not specified simply ‘Stop’ is added as a prefix to the name.

• iconName - name of the icon that is used. It can be either a file in the assets directory, or an
icon described in /pipeline-manager/pipeline_manager/frontend/src/icons/index.ts.

• procedureName - name of the procedure (either a built-in API procedure or a custom pro-
cedure) to be called. It is assumed that the procedure accepts a does not need any ar-
guments, or takes one argument which is the currently displayed dataflow (similarly to
[dataflow_run(#external-dataflow-run)]).

• allowToRunInParallelWith - a list of procedure names that can be started in parallel to
the currently running job.

Example of a button that is used to run the current graph using a dedicated procedure
dataflow_run looks as follows:

{
"name": "Run",
"stopName": "Stop",
"iconName": "Run",
"procedureName": "dataflow_run",
"allowToRunInParallelWith": [

"dataflow_validate",
"custom_lint_files"

]
}

This will create a button called Run, with the Run icon (available built-in icon), which upon
clicking will run dataflow_run method. During execution of the dataflow_run method, we can
run in parallel dataflow_validate and custom_lint_files procedures.

Antmicro 10

Note: By default, only single action can be called from NavBar at a time.

Warning: allowToRunInParallelWith is a one-way relation. This means that if we have two
actions that can be started when the other one is running, then allowToRunInParallelWith
needs to be defined in both actions.

3.1.2 Node

This object specifies a single node.

• name - name displayed in the editor.

• layer - layer type used for styling and toggling the node visibility in the editor.

• category - context menu category displayed in the editor.

• icon - name of an SVG icon that is going to be displayed next to the name of the node.
The value of icon can be:

– string containing the path to the icon relative to the assets directory, e.g. filter.
svg for pipeline_manager/frontend/dist/assets/filter.svg

– string containing the URL to the remote image file

– {"key": "value"} pair, where key is the name of the icon class created in icons, in
Metadata, and value is a suffix of the URL.

Note: The assets directory can be created and filled manually or added by build script
with --assets-directory <path-to-directory-with-icons>, e.g.:

./build --assets-directory examples/sample-assets static-html static-html␣
→˓examples/sample-specification.json

• interfaces - array representing inputs, outputs and bidirectional ports for nodes. The
entries are of type Interface.

• properties - array with elements of type Property,

• interfaceGroups - array with elements of type Interface Groups,

• defaultInterfaceGroups - array of objects that specifies which interface groups are en-
abled by default. Every object should contain a name and direction of an Interface Groups.

• urls - a dictionary of URL class and URL suffixes pairs. The key should be a URL class key
from urls in metadata. The value of the entry is appended to the URL base from the URL
class.

• abstract - boolean determining whether the node type is abstract or not. Abstract node
types are used only for inheritance purposes, they do not appear in the final list of avail-
able nodes. They only have one mandatory field - name. The rest of the fields can be
provided to introduce some common properties of classes inheriting from it.

Antmicro 11

• additionalData - can be any JSON-like object (array, dictionary, number, string, . . .), it is
only used for storing some additional, node-specific data, such as comments etc.

• description - description of the node in markdown format that is displayed in a sidebar
node.

• isCategory - determines whether the node is both a category and a node. If set to true,
then the name of the node is inferred from the last text segment in the category parameter.
If any node has a node category in its category path then it has to extend from the nearest
ancestor category node. Additionally, if a node extends from a category node, then it has
to be in its subtree.

Some or all of the properties above (except for name) can be derived from existing node types
using the extends list - check Node type inheritance.

Here is an example of a node:

{
"name": "Filter2D",
"layer": "filters",
"category": "Filters",
"icon": "filter.svg",
"description": "Node that applies a *2D* filter.",
"properties": [

{
"name": "iterations",
"type": "integer",
"default": 1

},
{

"name": "border type",
"type": "select",
"values": ["constant", "replicate", "wrap", "reflect"],
"default": "constant"

}
],
"interfaces": [

{
"name": "image",
"type": "Image",
"direction": "input"

},
{

"name": "kernel",
"type": "Image",
"direction": "input"

},
{

"name": "output",
"type": "Image",
"direction": "output"

}
]

(continues on next page)

Antmicro 12

(continued from previous page)

}

Interface

An object that specifies a single input, output or inout interface of node. Every interface object
has following properties:

• name - name of the input displayed in the editor

• type - type of the input used for styling and validation purposes. Can be either a list of
strings or a single string. If two interfaces have at least one matching type, they can be
connected. The first type in the list is a “base” type - it is used to color the interface based
on Interface style. If only one type between two interfaces is matching, the connection
style matches the one defined for this particular type. Otherwise, if multiple types are
matching, a white solid line for connection is rendered.

• direction (optional) - type of the interface in terms of direction, it can be:

– input - interface accepts input data,

– output - interface returns output data.

– inout - interface can both produce outputs and receive inputs.

The default value is inout.

• maxConnectionsCount (optional) - specifies the maximum allowed number of connections
for a given port. Value less than 0 means no limit for connections for a given interface.
Value equal to 0 means default behavior - one allowed connection to inputs, many allowed
connections from outputs. The default value is 0.

• side (optional) - specifies the side on which the interface is rendered. Value can be either
left or right. Interfaces with direction set to input or inout are by default rendered on
the left side of the node. Interfaces with direction set to output are by default rendered
on the right side of the node.

• dynamic (optional) - determines whether the interface should be dynamic, which means
that the number of interfaces created of this definition can be changed in the editor. For
each dynamic interface definition, a new property is added to the node that allows the
user to change the number of interfaces. The name of the property is determined by the
name and direction of the dynamic interface. The format is {name} {direction} count,
so it is important not to create conflicting properties. The name of the dynamic interfaces
is {name}[{i}], where i is the index of the interface. dynamic property can be either
true, then the maximum number of interfaces is not limited, or an array in a form of
[min, max] that specifies the range of interfaces. All created interfaces share the same
maxConnectionCount and type values.

• array (optional) - special keyword to easily define a range of interfaces. Value has to be
a list with two integer values that specify the range of interfaces. For example, for an
example interface with array: [0, 2] two interfaces called example[0] and example[1]
are created.

• sidePosition (optional) - specifies the row on which the interface is rendered. Values for
interfaces of the same side value have to be unique. If the value is not provided then

Antmicro 13

rows are automatically provided by iterating from the first upper row. This value does not
work for array keyword, as it produces more than one interface.

• externalName (optional) - used for graph nodes only, to expose an interface of a node
within the graph. It specifies the name of the interface of the graph. Both the interface of
the graph node and the interface of the node within the graph must have the same id and
direction fields. Note that values of externalName of the graph node have to be unique.

Note: Only interfaces of the same type can be connected together.

Property

An object that specifies a single property. Every project object has three required base properties:

• name - name of the property.

• type - type of the property.

• default - specifies a default selected value Its type depends on the type chosen.

There are nine possible values for the type property.

• text - property is a string. A text field is displayed to the user.

• constant - property is a string. A non-modifiable text field is displayed to the user.

• number - property is a float. A number field is displayed to the user.

• integer - property is an int. A number field that only accepts integers is displayed to the
user.

• select - property is a string with a defined range. It requires a values property.

• bool - property is a bool. A bool representing boolean value

• slider - property is a float with a specified range. It requires min and max properties.

• list - property is a list of arguments of the same type, which can be specified using dtype.

• hex - property is a string representing base-16 number which has to match the following
regex: /0x[a-fA-F0-9].

Additional properties:

• min - specifies the left end of a range or minimal value of the base-16 number.

• max - specifies the right end of a range or maximal value of the base-16 number.

• values - specifies a range of possible values for select.

• dtype - specifies data type of elements in a list. Supported values are string, number,
integer, boolean.

• description - description of the property. In some cases, it can be displayed to the user.

• group - object of type Group.

Antmicro 14

Group

Array with elements of type Property. It defines properties that are toggled by the property.
group can only be used with property of type bool.

Example group of properties:

{
"name": "Group", "type": "bool", "default": true, "group": [

{"name": "prop-a", "type": "integer", "default": 1},
{"name": "prop-b", "type": "text", "default": ""}

]
}

Node type inheritance

It is possible to inherit:

• layer

• category

• icon

• interfaces

• properties

• urls

From existing node types using the extends parameter. The parameter accepts a list of node
types. The node type is computed by iteratively updating node type definition structures, going
through all node types in the extends list (in the specified order), and then applying parameters
from the current node type.

Below is a sample specification with used inheritance mechanism:

{
"nodes": [

{
"name": "Type A",
"layer": "class",
"category": "Classes",
"properties": [

{"name": "prop-a", "type": "text", "default": ""}
],
"interfaces": [

{"name": "output-a", "type": "Interface", "direction": "output"}
]

},
{

"name": "Type B",
"extends": ["Type A"],
"properties": [

(continues on next page)

Antmicro 15

(continued from previous page)

{"name": "prop-b", "type": "text", "default": ""}
],
"interfaces": [

{"name": "output-b", "type": "Interface", "direction": "output"}
]

},
{

"name": "Type C",
"layer": "class",
"category": "Classes",
"properties": [

{"name": "prop-c", "type": "text", "default": ""}
],
"interfaces": [

{"name": "input-c", "type": "Interface", "direction": "input"}
]

},
{

"name": "Type D",
"extends": ["Type B", "Type C"],
"properties": [

{"name": "prop-d", "type": "text", "default": ""}
],
"interfaces": [

{"name": "inout-d", "type": "Interface", "direction": "inout"}
]

}
]

}

Warning: Node types can not be repeated (explicitly in list or implicitly through inheri-
tance) in the extends list.

Moreover, it is possible to override inherited properties and interfaces. This mechanism requires
using the same name and "override" attribute set to true. Only attributes used in the child
node are overridden, others are inherited without change. For instance:

{
"name": "Type D",
"extends": ["Type B", "Type C"],
"properties": [

{"name": "prop-a", "type": "number", "default": 1.4, "override":␣
→˓true},

{"name": "prop-c", "type": "integer", "default": 5, "override":␣
→˓true},

{"name": "prop-d", "type": "text", "default": ""}
],
"interfaces": [

(continues on next page)

Antmicro 16

(continued from previous page)

{"name": "inout-d", "type": "Interface", "direction": "inout"},
{"name": "output-a", "type": "Interface", "direction": "inout",

→˓"override": true}
]

}

3.1.3 Interface Groups

Object similar to a single interface but reserves a range of interfaces. name, type, direction,
maxConnectionsCount and side are the same as in a regular Interface. The only difference is that
a range of interfaces has to be defined which describes constraints of an interface. For example
two interface groups can be defined that consist of common interfaces and thus cannot coexist.

"interfaceGroups": [
{

"name": "1",
"type": "test",
"direction": "input",
"interfaces": [
{"name": "1[1]", "direction": "output"},
{"name": "1", "array": [3, 15], "direction": "output"},
{"name": "1", "array": [35, 48], "direction": "output"}

]
}

]

The interface group called 1 consists of three ranges of interfaces: 1[1], interfaces 1[3], 1[4],
..., 1[14] and 1[35], 1[36], ..., 1[47].

3.1.4 Included Graphs

Object that specifies a graph instance to be included in the specification. The included graphs
are available in the node palette and can be used in the editor.

Note: Included graphs cannot consist of more than one graph.

• name - name of the included graph, if not passed, the name of the graph is inferred from
the graph.

• category - category in which the included graph is placed in the node palette, uses / as a
delimiter. By default, the category is set to default.

• url - URL, where the graph file is located. The file has to be in a valid dataflow format.

Antmicro 17

3.2 Example

Below, you can see a sample specification containing a hypothetical definition of nodes for
image processing purposes:

{
"nodes": [

{
"name": "LoadVideo",
"layer": "filesystem",
"category": "Filesystem",
"properties": [

{"name": "filename", "type": "text", "default": ""}
],
"interfaces": [{"name": "frames", "type": "Image", "direction":

→˓"output"}]
},
{

"name": "SaveVideo",
"layer": "filesystem",
"category": "Filesystem",
"properties": [

{"name": "filename", "type": "text", "default": ""}
],
"interfaces": [

{"name": "color", "type": "Image", "direction": "input"},
{"name": "binary", "type": "BinaryImage", "direction": "input"}

]
},
{

"name": "GaussianKernel",
"layer": "kernel",
"category": "Generators",
"properties": [

{"name": "size", "type": "integer", "default": 5},
{"name": "sigma", "type": "number", "default": 1.0}

],
"interfaces": [{"name": "kernel", "type": "Image", "direction":

→˓"output"}]
},
{

"name": "StructuringElement",
"layer": "kernel",
"category": "Generators",
"properties": [

{"name": "size", "type": "integer", "default": 5},
{

"name": "shape",
"type": "select",
"values": ["Rectangle", "Cross", "Ellipse"],

(continues on next page)

Antmicro 18

(continued from previous page)

"default": "Cross"
}

],
"interfaces": [{"name": "kernel", "type": "BinaryImage", "direction":

→˓"output"}]
},
{

"name": "Filter2D",
"layer": "processing",
"category": "Processing",
"properties": [

{"name": "iterations", "type": "integer", "default": 1},
{

"name": "border type",
"type": "select",
"values": ["constant", "replicate", "wrap", "reflect"],
"default": "constant"

}
],
"interfaces": [

{"name": "image", "type": "Image", "direction": "input"},
{"name": "kernel", "type": "Image", "direction": "input"},
{"name": "output", "type": "Image", "direction": "output"}

]
},
{

"name": "Threshold",
"layer": "processing",
"category": "Processing",
"properties": [

{"name": "threshold_value", "type": "integer", "default": 1},
{

"name": "threshold_type",
"type": "select",
"values": ["Binary", "Truncate", "Otsu"],
"default": "constant"

}
],
"interfaces": [

{"name": "image", "type": "Image", "direction": "input"},
{"name": "output", "type": "BinaryImage", "direction": "output"}

]
},
{

"name": "Morphological operation",
"layer": "processing",
"category": "Processing",
"properties": [

{

(continues on next page)

Antmicro 19

(continued from previous page)

"name": "Enable operations", "type": "bool", "default": true,
→˓"group": [

{"name": "iterations", "type": "integer", "default": 1},
{

"name": "border type",
"type": "select",
"values": ["constant", "replicate", "wrap", "reflect

→˓"],
"default": "constant"

},
{

"name": "operation type",
"type": "select",
"values": ["dilation", "erosion", "closing", "opening

→˓"],
"default": "dilation"

}
]

}
],
"interfaces": [

{"name": "image", "type": "BinaryImage", "direction": "input"},
{"name": "kernel", "type": "BinaryImage", "direction": "input"},
{"name": "output", "type": "BinaryImage", "direction": "output"}

]
}

],
"metadata": {

"interfaces": {
"Image": "#00FF00",
"BinaryImage": "#FF0000"

}
},
"version": "20230830.10"

}

Thanks to the flexibility of the specification format, you can use any combination of properties
and interfaces to create a custom node. It is also readable and divided into distinct parts, so you
can implement a process of automated specification generation into an external application.
See the External App Communication section to find out more.

A sample node created from the specification above:

Antmicro 20

Antmicro 21

CHAPTER

FOUR

DATAFLOW FORMAT

A rendered graph with all its nodes, their properties, values, and connections is called a
dataflow. Its state can be serialized and saved as a JSON file.

4.1 Format description

The root of the dataflow format consists of four main attributes.

• metadata - structure of type Metadata. It is used to override metadata settings from the
Specification format. In general, values from dataflow’s metadata override settings from
specification. For simple types, such as strings or integers, values are changed. For arrays
and dictionaries, the values are updated (values of existing keys are replaced with new
ones, and the new values in arrays are appended to the existing entries).

• entryGraph - string that specifies the ID of the graph from graphs list that should be ren-
dered when the dataflow is loaded. If not specified, the first graph in the list is rendered.

• graphs - array of objects of type Graph that describe available graphs in the dataflow. Each
graph is a separate entity that can be rendered in the editor. If entryGraph is not specified,
the first graph in the list is rendered when the dataflow is loaded.

• version - string that identifies the version of the specification and dataflow. It is used to
check compatibility between provided dataflow and the current version of the implemen-
tation.

4.1.1 Graph

Graphs are a way to encapsulate a part of the dataflow into a separate entity. They can be
used to simplify the dataflow structure, group nodes, or create reusable components. On the
frontend level, graphs are rendered as distinct nodes, which can be interacted with in the same
way as standard nodes, but can be entered and expanded to show the content of the subgraph.
On top of that, interfaces of such graph nodes may be exposed and accessed outside the graph,
allowing to create more complex, multi-layer graph structures.

Each graph can be described with the following properties:

• id - unique value that identifies the graph.

• name - human-readable name of the graph.

• additionalData - any JSON-like data that provides additional information regarding the
graph.

22

• nodes - array that specifies all nodes in the dataflow. Every element is of type Node.

• connections - array that specifies all connections in the dataflow. Every element is of type
Connection.

• panning - object of type Panning that defines the position of the top-left corner in the
rendered editor.

• scaling - floating-point number that defines the zoom level in the editor.

Node

An object that describes a single node in the editor. Each node has:

• name - node name, as defined in the specification.

• id - unique value assigned to the node.

• instanceName - optional field defining a node’s title rendered to the user. If set,
instancename (name) will be displayed, otherwise, just the name will be rendered.

• properties - list describing the node’s parameterized values. Every element is of type
Property.

• interfaces - list describing the node’s interfaces. Every element is of type Interface.

• width - the node’s width in the editor.

• twoColumn - boolean value. If set to true, the interfaces on opposite sides will be arranged
parallel to each other. Otherwise, each interface will be positioned on a separate line.

• subgraph - optional field defining the id of the subgraph that this node represents. It
refers to one of the Graphs entries from graphs with a matching id.

• enabledInterfaceGroups - optional array describing enabled interface groups. Every ele-
ment is of type Enabled Interface Groups.

Property

Each property is described by an object with three attributes:

• id - unique value assigned to the property

• name - name of the property

• value - actual value of the property.

Node having two parameters: example_text of value example_value and example_number of
value 123 would have the following options value:

[
{

"id": 1,
"name": "example_text",
"value": "example_value"

},
{

(continues on next page)

Antmicro 23

(continued from previous page)

"id": 2,
"name": "example_number",
"value": 123

}
]

Interface

Each input, output, and inout is described by an object with the following attributes:

• id - unique value assigned to the property. It is used to describe connections in the
dataflow.

• name - name of the interface

• direction - value determining the type of the interfaces. Can be either input, output, or
inout.

• side - tells on which side of the node the interface should be placed.

• sidePosition - specifies a row on which the interface is rendered. Values for interfaces of
the same side value have to be unique.

• externalName - name of the interface displayed in the editor. For every interface in each
node, it is possible to make it a graph interface. A graph interface has its own unique ex-
ternal name, which is visible when the graph is nested within another graph. It is used to
create multi-layer graphs, with subgraphs that can be connected to others nodes/graphs.
Both the interface of the graph node and the interface of the node within the graph have
the same id and direction fields. Note that values of externalName within the graph
have to be unique.

Example of graph interfaces:

{
"graphs": [

{
"id": "9c4d5349-9d3b-401f-86bb-021b7b3e5b81",
"nodes": [

{
"id": "0bfba841-a1e8-429c-aa8a-d98338339960",
"position": {

"x": 0,
"y": 0

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "Exposed Name",
"id": "29cd9a27-2b49-4ae7-a164-a574c07fc684",
"direction": "input",
"side": "left",

(continues on next page)

Antmicro 24

(continued from previous page)

"sidePosition": 0
}

],
"subgraph": "569edd54-0f42-4c24-a809-1509febbe23a",
"name": "Test subgraph node #1"

}
],
"connections": []

},
{

"id": "569edd54-0f42-4c24-a809-1509febbe23a",
"nodes": [

{
"id": "56910b7a-9fe9-4db1-9d19-71037711d718",
"position": {

"x": 871,
"y": 316

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "Within Input",
"externalName": "Exposed Name",
"id": "29cd9a27-2b49-4ae7-a164-a574c07fc684",
"direction": "input",
"side": "left",
"sidePosition": 0

}
],
"name": "Exposed interface node"

}
],
"connections": []

}
],
"entryGraph": "9c4d5349-9d3b-401f-86bb-021b7b3e5b81",
"version": "20240723.13"

}

The example consists of two graphs. The first graph of id
9c4d5349-9d3b-401f-86bb-021b7b3e5b81 consists of a single graph node with an inter-
face of id 29cd9a27-2b49-4ae7-a164-a574c07fc684. The node represents a graph of id
569edd54-0f42-4c24-a809-1509febbe23a, which is a graph with a single node with an interface
of id 29cd9a27-2b49-4ae7-a164-a574c07fc684. The interface of the graph node is exposed as
Exposed name thanks to which it can be accessed from the outside of the graph. Because the
interface is exposed, both of those interfaces have to have the same id and direction value.

Graph node:

Antmicro 25

Node within graph:

Connection

Object that describes a singular connection. It has three attributes:

• id - unique value assigned to the connection

• from - the connection’s output interface id

• to - the connection’s input interface id.

• anchors - optional list of Anchor objects.

Anchor

This object describes a single anchor that is used to render connections divided into subparts.
Every part of the connection is rendered between two adjacent anchors. Two attributes are
used:

• x - x coordinate of the anchor

• y - y coordinate of the anchor.

Antmicro 26

Panning

This object describes the position of the top-left corner of the rendered editor in the browser.
Defines the camera position in the editor space. Two attributes are used:

• x - x coordinate of the corner

• y - y coordinate of the corner.

Enabled Interface Groups

Each enabled interface group is described by the following properties:

• name - name of the interface group

• direction - value determining the type of the interfaces. Can be either input, output or
inout.

Warning: Make sure that enabled interface groups use disjoint interfaces.

4.2 Example dataflow

The example dataflow for a specification defined in Specification format is defined as below:

{
"graphs": [

{
"id": "2035108300",
"nodes": [

{
"name": "Filter2D",
"id": "node_168064109167511",
"position": {

"x": 544,
"y": 77

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "image",
"id": "ni_168064109167612",
"direction": "input"

},
{

"name": "kernel",
"id": "ni_168064109167613",
"direction": "input"

},
(continues on next page)

Antmicro 27

(continued from previous page)

{
"name": "output",
"id": "ni_168064109167714",
"direction": "output"

}
],
"properties": [

{
"name": "iterations",
"id": "8434027854",
"value": 1

},
{

"name": "border type",
"id": "7165552813",
"value": "constant"

}
],
"instanceName": "Filter"

},
{

"name": "LoadVideo",
"id": "node_168064220761015",
"position": {

"x": -60,
"y": -36

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "frames",
"id": "ni_168064220761016",
"direction": "output"

}
],
"properties": [

{
"name": "filename",
"id": "8887517324",
"value": "input.mp4"

}
]

},
{

"name": "GaussianKernel",
"id": "node_168064222522321",
"position": {

"x": -65,

(continues on next page)

Antmicro 28

(continued from previous page)

"y": 295
},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "kernel",
"id": "ni_168064222522422",
"direction": "output"

}
],
"properties": [

{
"name": "size",
"id": "1247863780",
"value": 5

},
{

"name": "sigma",
"id": "0187870808",
"value": 1

}
]

},
{

"name": "Threshold",
"id": "node_168064225320530",
"position": {

"x": 999,
"y": 100

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "image",
"id": "ni_168064225320531",
"direction": "input"

},
{

"name": "output",
"id": "ni_168064225320532",
"direction": "output"

}
],
"properties": [

{
"name": "threshold_value",
"id": "8770324282",

(continues on next page)

Antmicro 29

(continued from previous page)

"value": 1
},
{

"name": "threshold_type",
"id": "8305532648",
"value": "Otsu"

}
]

},
{

"name": "StructuringElement",
"id": "node_168064227787336",
"position": {

"x": 1010,
"y": 409

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "kernel",
"id": "ni_168064227787437",
"direction": "output"

}
],
"properties": [

{
"name": "size",
"id": "1587558664",
"value": 5

},
{

"name": "shape",
"id": "1375086555",
"value": "Cross"

}
]

},
{

"name": "Morphological operation",
"id": "node_168064228786538",
"position": {

"x": 1422,
"y": 54

},
"width": 200,
"twoColumn": false,
"interfaces": [

{

(continues on next page)

Antmicro 30

(continued from previous page)

"name": "image",
"id": "ni_168064228786539",
"direction": "input"

},
{

"name": "kernel",
"id": "ni_168064228786540",
"direction": "input"

},
{

"name": "output",
"id": "ni_168064228786641",
"direction": "output"

}
],
"properties": [

{
"name": "iterations",
"id": "0605526715",
"value": 1

},
{

"name": "border type",
"id": "2810748353",
"value": "constant"

},
{

"name": "operation type",
"id": "8413506138",
"value": "dilation"

}
]

},
{

"name": "SaveVideo",
"id": "node_168064231007448",
"position": {

"x": 1773,
"y": 76

},
"width": 200,
"twoColumn": false,
"interfaces": [

{
"name": "color",
"id": "ni_168064231007449",
"direction": "input"

},
{

(continues on next page)

Antmicro 31

(continued from previous page)

"name": "binary",
"id": "ni_168064231007450",
"direction": "input"

}
],
"properties": [

{
"name": "filename",
"id": "3087244218",
"value": "output.mp4"

}
]

}
],
"connections": [

{
"id": "168064222082820",
"from": "ni_168064220761016",
"to": "ni_168064109167612"

},
{

"id": "168064222926625",
"from": "ni_168064222522422",
"to": "ni_168064109167613"

},
{

"id": "168064225938335",
"from": "ni_168064109167714",
"to": "ni_168064225320531"

},
{

"id": "168064230015344",
"from": "ni_168064225320532",
"to": "ni_168064228786539"

},
{

"id": "168064230253147",
"from": "ni_168064227787437",
"to": "ni_168064228786540"

},
{

"id": "168064231874053",
"from": "ni_168064228786641",
"to": "ni_168064231007450"

}
]
"panning": {

"x": 0,
"y": 0

(continues on next page)

Antmicro 32

(continued from previous page)

},
"scaling": 1

},
]

}

The highlighted bits of code represent all code fragments relevant to the Filter2D node. In the
nodes list, there is a full specification of the state of the Filter2D node:

• Its unique id

• Its name

• Its parameters (stored in parameters), e.g. border_type equal to constant

• Its interfaces, with unique id representing each input and output

• Rendering data, such as position or width.

Later, in connections, you can see triples representing to which interfaces the interfaces of
Filter2D are connected.

Antmicro 33

34

CHAPTER

FIVE

FRONT-END FEATURES

5.1 Graph manipulation

Antmicro 35

On the left side there is a node palette (which can be turned off or on using the green icon in
the upper left corner). To add a new node to the graph, click the node in the palette and drag
it to the editor. You can also select existing nodes and copy and paste them using ctrl-c and
ctrl-v keyboard shortcuts.

After loading a specification, the palette will contain all the nodes defined in it and will be
divided into hierarchical categories. Additionally, a graph node named New Graph Node is
always available under a Graphs category and can be used to design custom graphs.

In the upper right corner of each node there is a context menu toggle. It contains the following
options:

• Rename - Changes instanceName of the node. More details regarding node naming can be
found in the ‘instanceName’ field of dataflow format

• Delete - Deletes the node from the dataflow. Another way of deleting nodes is to select
and press the Delete key.

• Additional, user defined URLs. More details in the URL specification

Scroll lets you to zoom in and out. Left-clicking and dragging the editor background allows you
to move around the editor area.

Left-clicking on a node allows you to select and drag the node within the editor area. Pressing
the ctrl key while moving a node allows you to align the node with another one along some
axis.

To create a connection, left-click a node’s connector and connect it to a connector (of a matching
type, see Specification format) on another node. Double left-click on an existing connection
removes it.

Antmicro 36

5.2 Settings

On the upper right corner of Pipeline Manager window there is a gear icon toggling settings
tab. In the tab following options can be found:

• Connection style - Switch the style of the connection between orthogonal and curved

Antmicro 37

• AutoLayout algorithm - Choose the algorithm for automatic node placement. Autolayout
algorithm is triggered in the following situations:

– When loading the dataflow autolayout is used to place nodes without the position
parameter set. Dataflow load can be triggered either via external application or
choosing the Load graph file option. In this case autolayout is applied to both the
main graph and the nodes in the subgraphs.

– By pressing the Apply autolayout button in the settings tab. In this case autolayout
is applied to the entire graph.

• Background grid size - Sets the size of single grid cell visible in the background

• Node movement step - Sets the minimum step size which can be taken along each axis
when moving node.

• Center - Pressing this buttons moves the viewport to the center of graph and sets the zoom
level so that whole dataflow is visible

• Hide layers - Metadata allows to specify layers for a certain set of interface types and
connections. Toggling this checkbox allows to hide connections belonging to said layer

5.3 Notifications

Pipeline Manager provides notifications describing errors occurring in:

• The front end, such as invalid input specification, or invalid dataflow

• The back end (see Communication with an external application)

During pipeline development or execution, notifications can display various messages to the
user.

Antmicro 38

5.4 Full screen

Near the settings tab, there is a full screen icon. Clicking it will expand the Pipeline Man-
ager window to full screen. Note that this feature may be disabled during embedding Pipeline
Manager in an external application, make sure to allow full screen mode.

For example, in the case of embedding Pipeline Manager in an iframe, the allow="fullscreen"
attribute must be set:

<iframe src="https://url" allow="fullscreen">
<p>Your browser does not support iframes.</p>

</iframe>

5.5 Editor menu

Depending the application’s mode (static-html or server-app), the following options will be
available in the Pipeline Manager menu:

Antmicro 39

• Load specification - lets the user load a specification file describing the nodes that can
appear in the graph (see Specification format)

Note: It appears only in the static-html build mode, where a specification is not deliv-
ered by a third-party app.

• Load graph file - lets the user load a graph specification in Pipeline Manager’s internal
format (see Dataflow specification).

• Save graph file - Saves the graph currently stored in the editor into JSON using Pipeline
Manager’s internal format.

• Export graph to PNG - Saves the graph currently stored in the editor as PNG image

• Load file - lets the user load a file describing a graph in the native format supported by
the third-party application using Pipeline Manager for visualization.

Note: It appears only in the server-app build mode, since the third-party app performs
conversion from its native format to the Dataflow format

• Save file - saves the current graph in a native format supported by the third-party appli-
cation using Pipeline Manager for visualization.

Note: It appears only in the server-app build mode, since the third-party app performs
conversion from the Dataflow format received from the editor to its native format.

5.6 Working with the server

When Pipeline Manager works in the server-app mode, it is connected to an external applica-
tion, making it possible to manipulate or execute a graph as well as save and load files in the
application’s native format.

Status of the connection is displayed in the upper right corner of the editor. The color of the
icon indicates the status of the connection with the server:

• Red - No connection with the server.

• Green - Connection with the server is established.

Extrnal application may deliver additional features by providing additional buttons in the editor
menu. More details can be found in the Specification format section.

Antmicro 40

5.7 URL parameters for the frontend

The frontend of Pipeline Manager provides a set of URL parameters that can be used to change
the specification, graph or default behavior of the application. Those arguments need to be
encoded - we need to escape all URL-specific characters. This can be achieved either with
urllib.parse.urlencode in Python:

import urllib.parse

urllib.parse.urlencode({
"spec": "https://github.com/antmicro/kenning-pipeline-manager/blob/main/

→˓examples/sample-specification.json",
"graph": "https://github.com/antmicro/kenning-pipeline-manager/blob/main/

→˓examples/sample-dataflow.json"
})

RESULT: 'spec=https%3A%2F%2Fgithub.com%2Fantmicro%2Fkenning-pipeline-manager
→˓%2Fblob%2Fmain%2Fexamples%2Fsample-specification.json&graph=https%3A%2F
→˓%2Fgithub.com%2Fantmicro%2Fkenning-pipeline-manager%2Fblob%2Fmain%2Fexamples
→˓%2Fsample-dataflow.json'

or with encodeURIComponent in Javascript:

encodeURIComponent("https://github.com/antmicro/kenning-pipeline-manager/blob/
→˓main/examples/sample-specification.json")

// RESULT: 'https%3A%2F%2Fgithub.com%2Fantmicro%2Fkenning-pipeline-manager%2Fblob
→˓%2Fmain%2Fexamples%2Fsample-specification.json'

Available parameters are as follows:

• spec - URL to the specification, by default it can be a HTTP/HTTPS URL.

• graph - URL to the graph, by default it can be a HTTP/HTTPS URL.

• preview - starts Pipeline Manager in read only mode, without HUD

• include - allows to provide includes for the specification.

When it comes to spec and graph, by default we can use following URI schemes:

• http://, https://

• relative:// - picks a path relative to the Pipeline Manager URL

To add more URI schemes, we need to define VUE_APP_JSON_URL_SUBSTITUTES variable holding
a dictionary mapping scheme name to appropriate template/prefix.

The JSON for URL substitutes can look as follows:

{
"examples": "https://github.com/antmicro/kenning-pipeline-manager/examples/{}"

}

And be later be referred to as examples://sample-specification.json in URL.

Antmicro 41

Note: The URI schemes can be passed to pipeline_manager build via
--json_url_specification argument.

5.8 Passing JSON objects directly

There is also a possibility to pass JSON objects directly to the frontend, without having to save
them to a file and add to URL.

This can be done by sending POST requests from an external app opening Pipeline Manager,
e.g:

const iframe = document.getElementById({PipelineManagerIframe});
iframe.contentWindow.postMessage({"type": "specification", "content": data},
→˓{PipelineManagerURL});

This piece of code opens Pipeline Manager in an iframe and provides it with a data JSON object
containing the requested specification.

The following message types are supported:

• specification

• dataflow

The requested JSON object has to be included in the content field.

5.9 Testing the front-end features

The best way to test the front-end features is to use the pipeline_manager.frontend_tester.
tester_client, Third-party server example.

Antmicro 42

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

CHAPTER

SIX

COMMUNICATIONWITH AN EXTERNAL APPLICATION

The communication with an external application is based on a JSON-RPC, BSD sockets and
SocketIO. Pipeline Manager implements a TCP server that is listening on a specified port and
waiting for the client to connect. Pipeline Manager frontend sends JSON-RPC requests to this
server through SocketIO, which redirects messages to connected client for specific actions de-
scribed in this chapter. External application can also request actions from Pipeline Manager in
similar manner.

6.1 Communication protocol

The application layer protocol specifies two blocks:

• size - four first bytes form an unsigned integer and tell the size of the content of the
message in bytes.

• content - the rest of the message holding additional data in JSON-RPC format described
in API Specification.

The size and content are stored in big-endian.

6.1.1 Communication structure

By default, Pipeline Manager in server-app mode will wait for an external application to con-
nect and then request the specification. If connection is established successfully, Pipeline Man-
ager frontend will check if external application is still connected every 0.5 second. Apart from
that, both Pipeline Manager frontend and external application can send requests which pass
through Pipeline Manager backend.

Figure 6.1: Communication sequence diagram

As Pipeline Manager part of communication is done with SocketIO, it is based on events, which
are precisely defined for both sides and can trigger different actions.

Frontend listens to:

• api – received messages are JSON-RPC requests, they are validated with specification,
executed and generated responds are resend,

• api-response – received messages are JSON-RPC responses, they are also validated and
returned as result of previous request.

Backend implements the following events:

43

https://www.jsonrpc.org/specification

• backend-api – receives all JSON-RPC requests, runs methods and responds,

• external-api – redirects messages to external application through BSD socket.

On the other hand, communication between backend and external application is done through
BSD socket. To manage this, both sides run socket listener as separate coroutine task, which
waits for messages and responds or redirects them.

Following communication structure diagram below, we have:

• blue lines describing Backend API request from frontend,

• red lines describing External App API request from frontend,

• purple lines describing Frontend API request from external application.

Figure 6.2: Communication structure diagram

6.2 Response messages types - sent by the external application

6.2.1 OK

Message of type OK (0) is used to indicate a success and optionally includes an answer to a
previous request. Its content may vary depending on the request type.

6.2.2 ERROR

Message of type ERROR (1) is used to indicate a failure and optionally includes an answer to a
previous request. Its content may vary depending on the answered request.

6.2.3 PROGRESS

Message of optional type PROGRESS (2) is used to inform Pipeline Manager about the status of
a running dataflow. The PROGRESS message type can only be used once a message of type RUN is
received and can be sent multiple times before sending a final response message of type either
ERROR or OK that indicates the end of the run. The progress information is conveyed in content
using a number ranging 0 - 100 encoded in UTF-8 that signals the percentage of completion of
the run. See RUN for more information.

6.2.4 WARNING

Message of type WARNING (3) is used to indicate a success but also alerts of a condition that
might cause a problem in the future. It optionally includes an answer to a previous request. Its
content may vary depending on the answered request.

Antmicro 44

6.3 API Specification

6.3.1 Frontend API

graph_get

Returns dataflow used by frontend

• params: Refer to null_or_empty.

• result: Refer to dataflow_object.

node_get

Procedure to read node state

• params

– All of

* Refer to node_object.

• result (object): Cannot contain additional properties.

– node (object, required): State of the node.

properties_get

Procedure to alter values of a node

• params (object): Cannot contain unevaluated properties.

– All of

* Refer to node_object.

– properties ([array, null]): Properties which values are going to be read specified by
either a name of id. If undefined then all properties are returned.

* Items (object)

· One of

· object: Cannot contain additional properties.

· id (string, required): Id of the property to read.

· object: Cannot contain additional properties.

· name (string, required): Name of the property to read.

• result (array)

– Items (object): Values of the searched properties. Cannot contain additional proper-
ties.

* id (string, required): Id of the property.

* name (string, required): Name of the property.

Antmicro 45

* value: Value of the property. Its type depends on the property.

properties_change

Procedure to alter properties of a node

• params: Refer to properties_diff.

• result: Refer to null_or_empty.

position_change

Procedure to alter position of a node

• params: Refer to position_diff.

• result: Refer to null_or_empty.

nodes_change

Procedure to add and delete nodes

• params: Refer to nodes_diff.

• result: Refer to null_or_empty.

connections_change

Procedure to add and delete connections

• params: Refer to connections_diff.

• result: Refer to null_or_empty.

graph_change

Procedure to add and delete nodes

• params: Refer to dataflow_object.

• result: Refer to null_or_empty.

progress_change

Notification with progress of job ran by external application

• params (object): Parameters for notification. Cannot contain additional properties.

– method (string, required): Name of the method used to run the job.

– progress (number, required): Progress of job ran be external application. If between
0 and 100 progress will be set and if -1, animation will ran.

Antmicro 46

metadata_change

Updates the editor’s metadata

• params: Refer to metadata.

viewport_center

Center the editor

• params: Refer to null_or_empty.

terminal_add

Create new terminal instance

• params (object): Parameters for request.

– name (string, required): Unique name for the new terminal instance. This name is
used for any communication.

– readonly (boolean): Specifies whether the terminal should be read-only, or editable
by user. Default: true.

• result: Refer to null_or_empty.

terminal_write

Writes a message line to a terminal instance. Allows to send both text and hterm’s control
sequences. For more details on available control sequences check hterm Control Sequences.

Warning: Since data is sent in JSON format, the hexadecimal values need to be escaped
with \u, not \x, e.g. \u001b[38:2:238:178:17mexample.

• params (object): Parameters for request.

– name (string, required): Name of the terminal to which the message is written.

– message (string, required): Message to be written to the terminal.

• result: Refer to null_or_empty.

notification_send

Sends a notification to the frontend. It will display the message both in the notifications and in
the default terminal

• params (object): Parameters for notification.

– type: Type of the notification. Must be one of: ["error", "warning", "info"].

– title (string, required): Title of the notification, appearing both in the terminal and
notification.

Antmicro 47

https://chromium.googlesource.com/apps/libapps/+/master/hterm/doc/ControlSequences.md

– details (string, required): Details of the notification, displayed only in the terminal.

• result: Refer to null_or_empty.

specification_change

Procedure to update specification

• params: Refer to specification_object.

• result: Refer to null_or_empty.

6.3.2 Backend API

status_get

Returns status of connection with external application

• params: Refer to null_or_empty.

• result (object): Description of backend status. Cannot contain additional properties.

– status (object, required): Status. Cannot contain additional properties.

* connected (boolean, required): Connection with external application.

external_app_connect

Request to wait till connection with external application is established

• params: Refer to null_or_empty.

• result: Refer to empty.

connected_frontends_get

Request the number of connected fronteds

• params: Refer to null_or_empty.

• result (object): Cannot contain additional properties.

– connections (number, required): Number of connections.

6.3.3 External App API

specification_get

Request specification used by external application

• params: Refer to null_or_empty.

• result: Refer to external_endpoint_return_type.

Antmicro 48

app_capabilities_get

Request external application capabilities

• params: Refer to null_or_empty.

• result (object): External application capabilities. Cannot contain additional properties.

– stoppable_methods (array): List with methods that can be stopped with
dataflow_stop request.

* Items (string): Name of the stoppable method.

dataflow_import

Request to convert dataflow in external app to Pipeline Manager format and import it

• params (object): Parameters for request. Cannot contain additional properties.

– external_application_dataflow (string, required): Dataflow in external application
format. If loaded file cannot be represented as text, it will be sent as base64 string.
To make sure received data are in readable format convert_message_to_string from
pipeline_manager_backend_communication.utils can be used. Optionally, for con-
version to bytes convert_message_to_bytes function is available.

– mime (string, required): MIME type.

– base64 (boolean, required): Specifies whether external_application_dataflow is in
byte64 format.

• result: Refer to external_endpoint_return_type.

dataflow_validate

Request external application to validate dataflow

• params: Refer to dataflow_object.

• result: Refer to external_endpoint_return_type.

dataflow_run

Request external application to run dataflow

• params: Refer to dataflow_object.

• result: Refer to external_endpoint_return_type.

Antmicro 49

dataflow_stop

Request external application to run dataflow

• params (object): Parameters for stopping dataflow. Cannot contain additional properties.

– method (string, required): Name of the method used to start run.

• result: Refer to external_endpoint_return_type.

dataflow_export

Request external application to export dataflow

• params: Refer to dataflow_object.

• result (object): Common type returned by external app. Cannot contain additional prop-
erties.

– type (number, required): MessageType specifying success or error.

– content ([object, string]): Exported dataflow, which is then saved by the frontend
user. Should be either a json object, or a base64 encoded string. If any error occurred
then it should contain a proper message.

– filename (string): Suggested filename used to save the file.

frontend_on_connect

Request send when Pipeline Manager frontend connects to backend

• params: Refer to null_or_empty.

• result: Refer to null_or_empty.

properties_on_change

Request send when properties of any node changes

• params: Refer to properties_diff.

• result: Refer to null_or_empty.

position_on_change

Request send when position of any node changes

• params: Refer to position_diff.

• result: Refer to null_or_empty.

Antmicro 50

nodes_on_change

Request send when node was added or deleted

• params: Refer to nodes_diff.

• result: Refer to null_or_empty.

connections_on_change

Request send when connection was added or deleted

• params: Refer to connections_diff.

• result: Refer to null_or_empty.

graph_on_change

Request send when whole dataflow changed, e.g. when dataflow is loaded

• params: Refer to dataflow_object.

• result: Refer to null_or_empty.

metadata_on_change

Request send when metadata was changed

• params: Refer to metadata.

• result: Refer to null_or_empty.

viewport_on_center

Request send when editor was centered

• params: Refer to null_or_empty.

• result: Refer to null_or_empty.

terminal_read

Request sent by the frontend when terminal received an input

• params (object): Parameters for request.

– name (string, required): Name of the terminal to which the message was written.
Terminal has to be not read-only.

– message (string, required): Terminal input.

• result: Refer to null_or_empty.

Antmicro 51

6.3.4 Common Types

empty

• object: Empty object definition. Cannot contain additional properties.

null_or_empty

• [object, null]: Empty or missing object definition. Cannot contain additional properties.

node_object

• object: Schema that identifies a node in a graph.

– graph_id (string, required): Id of the graph.

– node_id (string, required): Id of the node.

dataflow_object

• object: Definition containing dataflow object. Cannot contain additional properties.

– dataflow (object): JSON with graph definition in PM format.

specification_object

• object: Definition containing specification object. Cannot contain additional properties.

– specification (object): JSON with specification definition in PM format.

properties_diff

• object: Schema that represents differences in properties of the node. Cannot contain
unevaluated properties.

– All of

* Refer to node_object.

– properties (array, required): Properties to change specified by either a name or id.

* Items (object)

· One of

· object: Cannot contain additional properties.

· id (string, required): Id of the property to alter.

· new_value: New value of the property.

· object: Cannot contain additional properties.

· name (string, required): Name of the property to alter.

· new_value: New value of the property.

Antmicro 52

position_diff

• object: Schema that represent differences in position of the node. Cannot contain uneval-
uated properties.

– All of

* Refer to node_object.

– position (object, required): Position to change specified by either a name or id.

* x (number): X coordinate.

* y (number): Y coordinate.

nodes_diff

• object: Schema that represents nodes’ differences in a graph.

– graph_id (string, required): Id of the graph.

– nodes (object, required): .

* added (array): List with created nodes.

· Items (object): JSON with node definition.

* deleted (array): List with removed nodes.

· Items (string): ID of node to delete.

– remove_with_connections (boolean): Should node be removed with connections.

connections_diff

• object: Schema that represents connections’ differences in a graph.

– graph_id (string, required): Id of the graph.

– connections (object, required): .

* added (array): List with created connections.

· Items (object): JSON with connection definition.

* deleted (array): List with removed connections.

· Items (object): Connection defined with its beginning and end.

· from (string): ID of output interface.

· to (string): ID of input interface.

Antmicro 53

metadata

• object: Type with PM metadata. Cannot contain additional properties.

– metadata (object, required): JSON with metadata description in PM format.

external_endpoint_return_type

• object: Common type returned by external app. Cannot contain additional properties.

– type (number, required): MessageType specifying success, error or progress.

– content ([object, string]): Additional information, either message or dataflow.

6.3.5 Custom procedures

External application can define new remote procedures, which will be called by cus-
tom Navbar button. To use it, procedure’s name has to start with custom_ prefix, e.g.
custom_simulate_design.

Such remote procedures can be called from the frontend using custom Navbar buttons defined
in the metadata’s navbarItems field, e.g.:

{
"name": "Simulate design",
"stopName": "Stop simulation",
"iconName": "Run",
"procedureName": "custom_simulate_design"

}

Custom procedure has the same parameters and return type as dataflow_run method.

6.4 Implementing a Python-based client for Pipeline Manager

The communication described above is necessary to integrate an application with Pipeline Man-
ager. The client needs to be able to read requests coming from Pipeline Manager and send
proper responses.

For applications written in Python, you can use the pipeline-manager-backend-communication
library. It implements an easy-to-use interface that is able to communicate with Pipeline Man-
ager along with helper structures and enumerations.

The main structures provided by the pipeline-manager-backend-communication library are:

• CommunicationBackend - class that implements the functionality for receiving and sending
messages.

• MessageType - enum used to easily distinguish message types.

• Status - enum that describes the current state of the client.

The following code is an example of how to receive requests and send responses to Pipeline
Manager: As Pipeline Manager communication is based on JSON-RPC, application should im-
plement method that can be requested. They are described in Backend API.

Antmicro 54

https://github.com/antmicro/kenning-pipeline-manager-backend-communication

Class containing all implemented methods
class RPCMethods:

def specification_get(self) -> Dict:
...
return {'type': MessageType.OK.value, 'content': specification}

...

Defined methods have to have appropriate (matching with specification) name, input and out-
put.

Function name matches with the dataflow_import endpoint from External App␣
→˓API

def dataflow_import(self, external_application_dataflow: str, mime: str,␣
→˓base64: bool) -> Dict:

Function will receive one parameter, it's name has to be the same
as the one from API specification `params`.
Optional, but you can convert the received file to string format
with `convert_message_to_string`
from pipeline_manager_backend_communication.utils import (
convert_message_to_string
)
data_as_string = convert_message_to_string(

external_application_dataflow,
base64,
mime

)
...
pipeline_manager_dataflow here is the converted input file to the
Pipeline Manager's graph representation
return {

'type': MessageType.OK.value,
'content': pipeline_manager_dataflow

}

def dataflow_validate(self, dataflow: Dict) -> Dict:
...
Returned object has to match API specification `returns`
return {'type': MessageType.OK.value}

def dataflow_run(self, **kwargs: Dict) -> Dict:
All params can also be retrieved as one dictionary
print(kwargs['dataflow'])
...
return {'type': MessageType.OK.value}

Custom procedure example
def custom_build(self, dataflow: Dict) -> Dict:

...
return {'type': MessageType.OK.value}

Antmicro 55

Moreover, every uncaught exception will be classified as error.

def dataflow_export(self, dataflow: Dict) -> Dict:
...
raise Exception('Something went very, very bad...')

RPC methods can also be asynchronous. It is automatically detected by server and awaited.

async def dataflow_stop(self) -> Dict:
...
return {'type': MessageType.OK.value}

Therefore, the following JSON-RPC error message will be returned to frontend application.

{
"id": 1,
"jsonrpc": "2.0",
"error": {

"code": -3,
"message": "Something went very, very bad...",
"data": {}

}
}

TCP client, that connects to Pipeline Manager using host and port parameters provided has to
be created. It has to be initialized with object containing JSON-RPC methods.

host = '127.0.0.1'
port = 5000

Creating a client instance with host and port specified
client = CommunicationBackend(host, port)
Registering implemented methods and
connecting to Pipeline Manager
await client.initialize_client(RPCMethods())

Once the connection is established, the application can start listening for the incoming requests.

await client.start_json_rpc_client()

These methods can be wrapped into the async function and run with asyncio.run function.

6.4.1 Sending JSON-RPC requests to Pipeline Manager

Sending requests is defined as coroutine which has to be awaited.

response = await client.request('graph_get')

This method sends graph-get request to frontend application and receive following response:

Antmicro 56

{
"id": 1,
"jsonrpc": "2.0",
"result": {

"dataflow": {
// ...

}
}

}

Antmicro 57

CHAPTER

SEVEN

SAMPLE THIRD-PARTY SERVER

Some front-end features can be tested with the frontend_tester application that acts as a third-
party application in the server-app scenario. It allows the user to create graph representations
of basic front end use cases.

To be able to test the front end, start with building the front end in the server-app mode. In
the root of the project, run:

python -m pipeline_manager build server-app

Note: If the specification requires additional assets (e.g. icons), provide them with
--assets-directory <path-to-assets> flag, for example:

python -m pipeline_manager build server-app --assets-directory examples/sample-
→˓assets

Now, start the Pipeline Manager server application:

python -m pipeline_manager run --verbosity INFO

Once the server has started, it waits for the third-party application to connect to. Let’s run the
front end tester with:

python -m pipeline_manager.frontend_tester.tester_client

After this, the entire testing setup should be up and running at http://127.0.0.1:5000. From
there, it is possible to add mini scenarios mocking the work of the server to check various
front-end features.

The implementation of the tester_client is documented and quite straightforward. You can also
easily extend it to test other front-end (or back-end) features.

58

https://github.com/antmicro/kenning-pipeline-manager/blob/main/pipeline_manager/frontend_tester/tester_client.py

CHAPTER

EIGHT

SPECIFICATION BUILDER

Creating a specification, especially in external applications written in Python, can be signifi-
cantly simplified with the SpecificationBuilder class. This tool:

• Provides methods to update the contents of the specification

• Provides an API that allows modifying the specification without worrying about the
changes in the format

• Provides sanity checks of URLs, prevents duplicates and validates the specification with
the frontend.

Note that this chapter only presents the initial steps of constructing a specification in Pipeline
Manager. Check the specification format for some more comprehensive details.

8.1 Example usage of the SpecificationBuilder

8.1.1 Creating the builder

Import the package, specify the specification version to use and create an instance:

from pathlib import Path
from pipeline_manager.specification_builder import SpecificationBuilder

SPECIFICATION_VERSION = '20240723.13'
ASSETS_DIRECTORY = Path("./assets")

specification_builder = SpecificationBuilder(
spec_version=SPECIFICATION_VERSION,
assets_dir=ASSETS_DIRECTORY,
check_urls=True

)

assets_dir is a path to additional assets (icons, visualizations) - it is used during validation to
inform the user that e.g. paths provided in the specification do not have corresponding files.
check_urls determines whether the SpecificationBuilder should check URLs provided in the
specification for availability and raise errors when pages are not found.

59

8.1.2 Creating node types

Node types can be created with:

specification_builder.add_node_type(
name='Digital camera',
category='Video provider'

)

This method requires a unique name of the node type. We can also specify category, parent
classes, layer and abstract fields. Follow the documentation of the class for more details.

8.1.3 Add node type “as category”

To create a node type that can act as a category grouping the child node types, we can use
add_node_type_as_category:

specification_builder.add_node_type_as_category(
categoryname='Filter',

)

To add a node that extends this node type as category, just provide its name in the extends field
in the child node:

specification_builder.add_node_type(
name='GaussianFilter',
extends='Filter'

)

8.1.4 Adding interfaces to node types

The following snippets show how to add interfaces to node types. Note that one or more values
can be passed to the interfacetype argument, signifying which types of other interfaces can be
connected to it.

specification_builder.add_node_type_interface(
name='Digital camera',
interfacename='Video output',
interfacetype='video',
direction='output'

)

specification_builder.add_node_type_interface(
name='Filter',
interfacename='Video',
interfacetype=['video', 'filtered_output'],
direction='input'

)

specification_builder.add_node_type_interface(
(continues on next page)

Antmicro 60

(continued from previous page)

name='Filter',
interfacename='Output',
interfacetype='filtered_output',
direction='output',

)

8.1.5 Adding properties to node types

To create a property in Pipeline Manager, we need to pass three required arguments:

• name - the name of the property

• type - the type of the property, which has nine possible values:

– text, constant, number, integer, select, bool, slider, list, hex,

• default - specifies a default value, its type depends on the type of the property

specification_builder.add_node_type_property(
name='Digital camera',
propname='Focal length',
proptype='slider',
min=14,
max=135,
default=50,
description='Value signifying a camera\'s angle of view'

)

specification_builder.add_node_type_property(
name='Filter',
propname='Kernel size',
proptype='select',
values=['3x3', '5x5', '7x7'],
default='3x3',
description='Small matrix used for convolution'

)

There are some additional arguments, available in the specification format.

8.1.6 Adding node type descriptions

Adding descriptions is just a matter of providing a node name and a description string.

specification_builder.add_node_description(
name='Digital camera',
description='Camera providing digital video output'

)

Antmicro 61

8.1.7 Adding metadata

Metadata specifies additional editor options, like connectionStyle or movementStep. All param-
eters are defined in the specification format.

specification_builder.metadata_add_param(
paramname='connectionStyle',
paramvalue='orthogonal'

)

8.1.8 Adding URLs to node types

To add a URL, first specify the URL group, which is part of the metadata. The icon argument
can be a path to an asset file or a link.

specification_builder.metadata_add_url(
groupname='wikipedia',
displayname='Wikipedia',
icon='https://en.wikipedia.org/static/favicon/wikipedia.ico',
url='https://en.wikipedia.org/'

)

Then, add the node URL by defining the suffix that will be appended to the group URL.

specification_builder.add_node_type_url(
name='Digital camera',
urlgroup='wikipedia',
suffix='wiki/Digital_camera'

)

8.1.9 Constructing and validating the specification

This function will generate and check the validity of the specification:

specification = specification_builder.create_and_validate_spec()

The possible arguments are:

• workspacedir - The path to the workspace directory for Pipeline Manager, the same that
has been provided for the build script

• fail_on_warnings - Determines whether the validation should fail on warnings

• dump_spec - A path to where the specification should be dumped as a file before validation.
Useful for debugging purposes.

• sort_spec - Return specification that has introduced ordering to dictionaries and lists. In
lists containing dictionaries the unique field of each dictionary is used to sort entries.

The created specification upon successful run should contain a full specification based on
SpecificationBuilder. It is a regular Python dictionary that can be saved to a JSON file using
the json.dump method.

Antmicro 62

Note: To make sure the entries in the specification are sorted (mostly dictionaries) after using
sort_spec, in case of Python’s json.dump and json.dumps methods use sort_keys=True, e.g.:

json.dumps(spec, sort_keys=True, indent=4)

8.2 SpecificationBuilder documentation

class pipeline_manager.specification_builder.SpecificationBuilder(spec_version: str,
assets_dir: Path |
None = None,
check_urls: bool =
False)

Creates a specification file and checks validity of files.

This class allows to:

• Create and modify specification entries using simple API

• Merge existing specifications with some consistency checks

• Check URLs to remote resources in terms of availability

• Checks correctness of paths to assets from the given directory

This class also performs very strict checking, e.g. it does not allow creating duplicates. In
case of any errors spotted it raises a SpecificationBuilderException.

add_include(include: str)
Adds include defined by url to the specification.

Parameters

include : str
URL to the specification to include

Raises
SpecificationBuilderException – Raised when include already exists.

add_include_subgraph(dataflow: dict[tuple[str, str], str])
Adds dataflow to the include subgraph defined by url.

Parameters

dataflow : Dict[Tuple[str, str], str]
Dataflow to include. Keys are tuples of node names and node urls

Raises
SpecificationBuilderException – Raised when included subgraph al-
ready exists

add_node_description(name: str, description: str)
Sets description for the node if it is not defined.

Parameters

Antmicro 63

name : str
Name of the node type

description : str
Description

Raises
SpecificationBuilderException – Raised if description is already de-
fined

add_node_type(name: str, category: str | None = None, layer: str | None = None,
extends: str | list[str] | None = None, abstract: bool | None = False)

Adds a node type to the specification.

Parameters

name : str
Name of the node type

category : Optional[str]
Category of the node

layer : Optional[str]
Name of the layer metatype

extends : Optional[Union[str, List[str]]]
Base classes for the node type

abstract : Optional[bool]
Tells if the type is abstract or not. Abstract types do not need to be
complete, they are also not added to the final specification. They are
templates for other classes.

Raises
SpecificationBuilderException – Raised if the node type is redefined.

add_node_type_additional_data(name: str, additionaldata: Any)
Adds additional data to the node, in JSON-like format.

Parameters

name : str
Name of the node type

additionaldata : Any
Any JSON-like construct

Raises
SpecificationBuilderException – Raised if additionalData already ex-
ists.

add_node_type_as_category(categoryname: str, categoryparent: str = '', layer: str |
None = None, extends: str | list[str] | None = None)

Adds a node type “as category” to the specification.

Parameters

categoryname : str
Name of the newly added category

Antmicro 64

categoryparent : str
Path to the new category

layer : Optional[str]
Name of the layer metatype

extends : Optional[Union[str, List[str]]]
Base classes for the node type

Raises
SpecificationBuilderException – Raised when node type is redefined.

add_node_type_category(name: str, category: str)
Adds a category to the given node. Raises an error if different category is already
added.

Parameters

name : str
name of the node type

category : str
category for the node type

Raises
SpecificationBuilderException – Raised if there is already a node type
category.

add_node_type_from_spec(node)

Adds single node type defined in JSON-like format.

add_node_type_icon(name: str, iconpath: dict | str) → None

Adds icon for the node type.

Parameters

name : str
Name of the node type

iconpath : Union[dict, str]
Icon path

Raises
SpecificationBuilderException – Raised when given icon is not avail-
able in metadata or is invalid.

add_node_type_interface(name: str, interfacename: str, interfacetype: str | list[str] |
None = None, direction: str = 'inout', dynamic: bool |
list[int] = False, side: str | None = None, maxcount: int |
None = None, override: bool | None = None, array: list[int] |
None = None)

Adds interface to the node type.

Parameters

name : str
Name of the node type

Antmicro 65

interfacename : str
Name of the interface

interfacetype : Optional[Union[str, List[str]]]
List of matching types for interfaces

direction : str
Direction of the connection, by default “inout”.

dynamic : Union[bool, List[int]]
Determine whether a number of interfaces may be dynamically ad-
justed. By default, False.

side : Optional[str]
On which side the interface should be placed by default

maxcount : Optional[int]
The maximum connections to the given interface

override : Optional[bool]
Determines whether interface should be overridden

array : Optional[List[int]]
Creates an array of interfaces with given name. Accepts two integers
- minimal and maximal value

Raises
SpecificationBuilderException – Raised when interface already ex-
ists.

add_node_type_parent(name: str, parent_names: str | list[str])
Adds a parent class to the node type. Raises an exception if the base name does not
exist.

Parameters

name : str
name of the node type

parent_names : Union[str, List[str]]
name of the base class, or list of base classes’ names.

Raises
SpecificationBuilderException – Raised when base/parent class is not
found.

add_node_type_property(name: str, propname: str, proptype: str, default: Any,
description: str | None = None, min: Any = None, max: Any =
None, values: list[Any] | None = None, dtype: str | None =
None, override: bool | None = None)

Adds property to the node.

Parameters

name : str
Name of the node type

propname : str
Name of the property

Antmicro 66

proptype : str
Type of the property

default : Any
Default value of the property

description : Optional[str]
Optional description for the property

min : Any
Minimal value

max : Any
Maximal value

values : Optional[List[Any]]
List of allowed values

dtype : Optional[str]
Type of elements in property type is list

override : Optional[bool]
Determines whether property should be overridden

Raises
SpecificationBuilderException – Raised when the property exists al-
ready.

add_node_type_property_group(name: str, propgroupname: str, propname: str,
proptype: str, default: Any, description: str | None =
None, min: Any = None, max: Any = None, values:
list[Any] | None = None, dtype: str | None = None,
override: bool | None = None)

Adds a property to a property group.

Parameters

name : str
Name of the node type

propgroupname : str
Name of the group of property

propname : str
Name of the property

proptype : str
Type of the property

default : Any
Default value of the property

description : Optional[str]
Optional description for the property

min : Any
Minimal value

max : Any
Maximal value

Antmicro 67

values : Optional[List[Any]]
List of allowed values

dtype : Optional[str]
Type of elements in property type is list

override : Optional[bool]
Determines whether property should be overridden

Raises
SpecificationBuilderException – Raised when no properties are found
that could be bound to the group.

add_node_type_url(name: str, urlgroup: str, suffix: str)
Adds URL for the node type.

Parameters

name : str
Name of the node type

urlgroup : str
Name of the URL group the entry is defined for. URL group defines
prefix, and icon for the URL.

suffix : str
Appended suffix to the URL group

Raises
SpecificationBuilderException – Raised if provided urlgroup does not
exist.

add_subgraph_from_spec(subgraph)

Adds subgraph defined in JSON-like format.

create_and_validate_spec(workspacedir: Path | None = None, resolved_specification:
Path | None = None, fail_on_warnings: bool = True,
sort_spec: bool = False, dump_spec: Path | None = None)
→ dict

Creates a specification and validates it using schema.

Parameters

workspacedir : Optional[Path]
Path to the workspace directory for Pipeline Manager

resolved_specification : Optional[Path]
Path to specification that has have resolved inheritance, i.e. resolved
‘extends’ attributes. If none then the specification is not resolved.

fail_on_warnings : bool
Tells if the specification creation should fail on warnings

sort_spec : bool
True if the entries in the specification should be sorted.

dump_spec : Optional[Path]
Tells where the specification should be dumped to file before valida-
tion and resolving for debugging purposes.

Antmicro 68

Returns
Built specification, if successful

Return type
Dict

Raises
SpecificationBuilderException – Raised when specification is not
valid or when warnings appeared.

create_property(propname: str, proptype: str, default: Any, description: str | None =
None, min: Any = None, max: Any = None, values: list[Any] | None =
None, dtype: str | None = None, override: bool | None = None) → dict

Creates and returns a property.

Parameters

propname : str
Name of the property

proptype : str
Type of the property

default : Any
Default value of the property

description : Optional[str]
Optional description for the property

min : Any
Minimal value

max : Any
Maximal value

values : Optional[List[Any]]
List of allowed values

dtype : Optional[str]
Type of elements in property type is list

override : Optional[bool]
Determines whether property should be overridden

Returns
Creates a single property for the node type

Return type
dict

get_node_description(name: str) → str

Gets description for the node type.

Parameters

name : str
Name of the node type

Returns
Description of the node type

Antmicro 69

Return type
str

metadata_add_interface_styling(interfacename: str, interfacecolor: str | None = None,
interfaceconnpattern: str | None = None,
interfaceconncolor: str | None = None)

Adds interface styling to metadata.

interfacename: str
Name of the interface type

interfacecolor: Optional[str]
Color of the interface

interfaceconnpattern: Optional[str]
Interface connection line pattern

interfaceconncolor: Optional[str]
Color of the interface connection line

metadata_add_layer(name: str, nodelayers: str | list[str] | None = None, nodeinterfaces:
str | list[str] | None = None)

Adds nodes’ layer to metadata.

Parameters

name : str
Name of the layer

nodelayers : Optional[Union[str, List[str]]]
List of node layers in the layer

nodeinterfaces : Optional[Union[str, List[str]]]
List of interface types in the layer

Raises
SpecificationBuilderException – Raised when provided layer already
exists.

metadata_add_param(paramname: str, paramvalue: Any, metadata: dict | None = None)

Sets parameter in metadata. Modifies the metadata dictionary in place.

The following rules apply: * If the parameter is a list and the value is a list, the
parameter is extended by the value. * If the parameter is a dictionary and the value
is a dictionary, the parameter is recursively updated by the value. * Otherwise, the
parameter is set to the value.

Parameters

paramname : str
Name of the metadata parameter

paramvalue : Any
Value of the parameter

metadata : Optional[Dict]
Metadata dictionary to modify. if None, the class metadata is used

Antmicro 70

metadata_add_url(groupname: str, displayname: str, icon: str, url: str)
Adds URL group to metadata.

Parameters

groupname : str
Name of the URL group

displayname : str
Displayable name of the URL group

icon : str
Path in assets directory or URL to the icon

url : str
URL prefix for the URL group

Raises
SpecificationBuilderException – Raised when URL group already ex-
ists and differs in format with the existing entry.

register_category(categorypath: str)
Adds a category to the set of available categories.

Parameters

categorypath : str
Category. Subcategories are added via path-like string.

reset()

Resets all fields for the specification.

set_node_description(name: str, description: str)
Sets description for the node type.

Parameters

name : str
Name of the node type

description : str
Description for the node

update_spec_from_other(otherspec: Any)
Updates the specification from other specification. It can be also used to merge
partial specifications.

Parameters

otherspec : Any
JSON-like structure with other specification

Raises
SpecificationBuilderException – Raised when “extends” in any node
has non-existent classes

Antmicro 71

CHAPTER

NINE

DATAFLOW GRAPH BUILDER

Class GraphBuilder (available in pipeline_manager.dataflow_builder.dataflow_builder)
provides a convenient Python API for creating and editing a dataflow graph.

9.1 Examples of GraphBuilder usage

9.1.1 Creating GraphBuilder

In order to create an instance of GraphBuilder:

from pipeline_manager.dataflow_builder.dataflow_builder import GraphBuilder

builder = GraphBuilder(
specification="examples/sample-specification.json",
specification_version="20240723.13",

)

The code creates an instance of GraphBuilder with the sample-specification.json loaded.

9.1.2 Obtaining a dataflow graph

A dataflow graph may be either loaded from a dataflow file or created.

To create a new empty dataflow graph:

from pipeline_manager.dataflow_builder.dataflow_graph import DataflowGraph

graph = builder.create_graph()

To load an existing specification from a file:

builder.load_graphs(dataflow_path='examples/sample-dataflow.json')
graph = builder.graphs[0]

In both cases, the dataflow graph:

• has to be compliant with the provided specification.

• is retrieved and may be edited with its public methods.

72

9.1.3 Creating a node

Having obtained the DataflowGraph object (in the previous examples, stored in the graph vari-
able), a new node may be added to the graph in the following way:

from pipeline_manager.dataflow_builder.entities import Node

node = graph.create_node(
name="LoadVideo", # Required.
position=Vector2(0, 0), # Optional.

)

Only keyword parameters are allowed. The available parameters of the create_node method are
attributes of the Node dataclass (which is located under pipeline_manager.dataflow_builder.
entities.Node).

9.1.4 Getting a node

A dataflow graphs stores nodes. Thus, nodes are retrieved from the dataflow graph in the
following way:

from pipeline_manager.dataflow_builder.dataflow_graph import AttributeType

nodes = graph.get(AttributeType.NODE, name="LoadVideo")
if len(nodes) > 0:

node = nodes[0]

Only nodes with name equal to LoadVideo will be retrieved.

The DataflowGraph.get method retrieves not only nodes but other objects present in the
AttributeType enum: connections, interfaces, and nodes. In this case, nodes are retrieved.
Parameters other than type are filters, which specify what values should the obtained objects
(here: nodes) have. Take a look at the next example to see such usage.

9.1.5 Getting a node matching multiple criteria

To get a node, which satisfies all the matching criteria, use the get method once again:

from pipeline_manager.dataflow_builder.entities import Vector2

[node] = graph.get(AttributeType.NODE, position=Vector2(0, 0), name="LoadVideo")

The code above puts in the node variable a node with name LoadVideo and position with coor-
dinates [0, 0].

Antmicro 73

9.1.6 Manipulating a node

After having a node retrieved from a graph, it is time to modify its attributes. For example, to
change an instance name of the node, run:

node.instance_name = 'Instance name of a node'

To change the property of the node, set_property can be used:

try:
Use of `set_property` is recommended to set values of properties of a node.
node.set_property('compression_rate', 1)

except KeyError:
print('Cannot set compression_rate to 1 as the property does not exists.')

To move the node from its current position, use move:

Move a node to [1000, 1000].
node.move(Vector2(1000, 1000))

Move the node by 500 pixels to the right, relative to its previous position.
node.move(new_position=Vector2(500, 0), relative=True)

9.2 Specification of GraphBuilder

class pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder(specification:
Path,
specifica-
tion_version:
str,
workspace_directory:
Path | None =
None)

Class for building dataflow graphs.

Each instance of the GraphBuilder must be associated with a single specification to ensure
proper validation.

create_graph(based_on: Path | str | DataflowGraph | None = None) → DataflowGraph
Create a dataflow graph and return its instance.

Create an instance of a dataflow graph, add it to the internal list and return it. The
dataflow graph is based on the graph provided in based_on parameter.

Parameters

based_on : Union[Path, str, DataflowGraph, None], optional
Dataflow graph, on which the new graph should be based on. When
Path or str, it should be a path to dataflow graph in a JSON format.
When DataflowGraph, it should be a valid representation (as its deep
copy will be added). When None, the new dataflow graph will not be
based on anything, by default None.

Antmicro 74

Returns
Instance a of a dataflow graph, preserved in the GraphBuilder.

Return type
DataflowGraph

load_graphs(dataflow_path: Path)
Load all dataflow graphs from a file.

Parameters

dataflow_path : Path
Path to a dataflow graph.

Raises
ValueError – Raised if a dataflow graph could not be loaded.

load_specification(specification_path: Path, purge_old_graphs: bool = True)

Load a specification from a file to use in GraphBuilder.

The default behaviour is to remove loaded dataflow graphs when loading a new
specification. That is due to the fact that a dataflow graph is closely linked with its
specification. Notice that loading a specification overrides the old one.

Parameters

specification_path : Path
Path to a specification file.

purge_old_graphs : bool, optional
Determine if dataflow graphs loaded to memory should be purged. It
makes sense as after changing a specification dataflow graphs may no
longer be valid. By default True.

Raises
ValueError – Raised if specification file cannot be loaded or is invalid.

save(json_file: Path)
Save graphs to a JSON file.

Parameters

json_file : Path
Path, where an output JSON file will be created.

validate()

Validate the entire dataflow file including all the included graphs.

Raises
RuntimeError – Raised if an external validator failed to validate either
a dataflow or specification file. An error message is provided by the
external validator.

Antmicro 75

9.3 Specification of DataflowGraph

class pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph(builder_with_spec:
Specification-
Builder,
dataflow:
dict[str, Any] |
None = None)

Representation of a dataflow graph.

create_connection(from_interface: Interface | str, to_interface: Interface | str,
connection_id: str | None = None) → InterfaceConnection

Create a connection between two existing interfaces.

The function performs numerous checks to verify validity of the desired connection,
including if the connection already exists, interfaces’ types are matching and so on.
The connection is added, given it has passed these checks.

Parameters

from_interface : Union[Interface, str]
Source interface, where data will flow from.

to_interface : Union[Interface, str]
Destination interface, where data will flow to.

connection_id : Optional[str]
Identifier of a connection. If not supplied, one will be generated.

Returns
Created connection added to the graph.

Return type
InterfaceConnection

Raises
ValueError – Raised if: - a source interface does not belong to the graph.
- a destination interface does not belong to the graph. - a source inter-
face direction is input. - a destination interface direction is output. - a
mismatch between source and destination interfaces’ types occurs.

create_node(name: str, **kwargs) → Node
Create the node initialized with the supplied arguments.

Use this method instead of manually adding a node. Default values are taken from
the specification, based on the provided name parameter. The default values may be
overridden by the values supplied in kwargs. id is already initialized.

Parameters

name : str
Name of a node, based on which default values will be derived.

**kwargs
Keyword arguments to initialise a newly created node. Check at-
tributes of Node dataclass, to find all available keys.

Antmicro 76

Returns
The initialized node that belongs to the dataflow graph.

Return type
Node

Raises
ValueError – Raised if name key is missing in the kwargs directory or
the provided name of the node does not exists in the specification.

get(type: AttributeType, **kwargs) → list[Node] | list[InterfaceConnection] |
list[Interface]

Get items of a given type, which satisfy all the desired criteria.

Items are understood as either nodes or connections or interfaces. The function finds
objects by eliminating these, which do not match the criteria. Thus, between all the
criteria is AND logical operator.

Parameters

type : AttributeType
Type of the output objects.

**kwargs
Contains search criteria. Available: - Keys: the attributes of the object
of he chosen type. - Values: values to be matched.

Returns
List of items satisfying the criteria.

Return type
Union[List[Node], List[InterfaceConnection], List[Interface]]

get_by_id(type: AttributeType, id: str) → InterfaceConnection | Node | Interface | None

Fast getter, which finds an item of a supplied type and with the provided id.

It has complexity of O(1) (except for interfaces) in juxtaposition to the get method,
which iterates over all items.

Parameters

type : AttributeType
Type of the output objects.

id : str
ID of the sought object.

Returns
Either an single instance of InterfaceConnection or Node or Interface
depending on the provided type. If does not exist, None is returned.

Return type
Optional[Union[InterfaceConnection, Node, Interface]]

to_json(as_str: bool = True) → str | dict

Convert a dataflow graph to the JSON format.

Parameters

Antmicro 77

as_str : bool, optional
Determine return type. By default, True.

Returns
Representation of the dataflow graph in JSON. If as_str is True, JSON in
str is returned. Otherwise, a Python dictionary is returned.

Return type
Union[Dict, str]

9.4 Specification of Node

class pipeline_manager.dataflow_builder.entities.Node(specification_builder:
SpecificationBuilder, **kwargs)

Representation of a node in a dataflow graph.

get(type: NodeAttributeType, **kwargs) → list[Property] | list[Interface]

Get either properties or interfaces matching criteria.

Parameters

type : NodeAttributeType
Type of an item to retrieve.

kwargs : Any
Criteria, which items have to satisfy.

Returns
List of either Property or Interface instances.

Return type
Union[List[Property], List[Interface]]

move(new_position: Vector2, relative: bool = False)

Change a position of the node.

Change a position of the node either in a relative manner or an absolute manner.
Values are clamped to stay in the range of values.

Parameters

new_position : Vector2
If relative is False, then this a new position. Otherwise, it is a displace-
ment (movement) vector.

relative : bool, optional
Whether position should be calculated based on the previous one
(True) or not (False), by default False.

set_property(property_name: str, property_value: Any) → None

Convenient setter to change value of a property of the node.

Parameters

property_name : str
Name of the property.

Antmicro 78

property_value : Any
New value of a property.

Return type
None

Raises
KeyError – Raised if property with the supplied property_named was not
found.

to_json(as_str=True) → str | dict

Convert a dataflow graph to the JSON format.

Parameters

as_str : bool, optional
Determine return type. By default, True.

Returns
Representation of the dataflow graph in JSON. If as_str is True, JSON in
str is returned. Otherwise, a Python dictionary is returned.

Return type
Union[Dict, str]

9.5 Specification of Interface

class pipeline_manager.dataflow_builder.entities.Interface(name: str, direction:
~pipeline_manager.dataflow_builder.entities.Direction,
side:
~pipeline_manager.dataflow_builder.entities.Side
| None = None,
side_position: int | None
= None, external_name:
str | None = None, id: str
= <factory>, type:
~typing.List[str] =
<factory>)

Representation of a node’s interface.

to_json(as_str: bool) → str | dict

Convert a dataflow graph to the JSON format.

Parameters

as_str : bool, optional
Determine return type. By default, True.

Returns
Representation of the dataflow graph in JSON. If as_str is True, JSON in
str is returned. Otherwise, a Python dictionary is returned.

Return type
Union[Dict, str]

Antmicro 79

9.6 Specification of Connection

Notice that name of the class representing connection is InterfaceConnection, not Connection.

class pipeline_manager.dataflow_builder.entities.InterfaceConnection(from_interface:
~pipeline_manager.dataflow_builder.entities.Interface,
to_interface:
~pipeline_manager.dataflow_builder.entities.Interface,
anchors: ~typ-
ing.List[~pipeline_manager.dataflow_builder.entities.Vector2]
| None =
None, id: str =
<factory>)

Representation of a connection between two interfaces in a dataflow graph.

to_json(as_str: bool = True) → str | dict

Convert a dataflow graph to the JSON format.

Parameters

as_str : bool, optional
Determine return type. By default, True.

Returns
Representation of the dataflow graph in JSON. If as_str is True, JSON in
str is returned. Otherwise, a Python dictionary is returned.

Return type
Union[Dict, str]

9.7 Specification of Property

class pipeline_manager.dataflow_builder.entities.Property(name: str, value:
~typing.Any, id: str =
<factory>)

A property of a node.

to_json(as_str: bool = True) → dict | str

Convert a dataflow graph to the JSON format.

Parameters

as_str : bool, optional
Determine return type. By default, True.

Returns
Representation of the dataflow graph in JSON. If as_str is True, JSON in
str is returned. Otherwise, a Python dictionary is returned.

Return type
Union[Dict, str]

Antmicro 80

CHAPTER

TEN

DATAFLOW AND SPECIFICATION FORMAT CHANGELOG

Formats of dataflows and specification is often updated with new features, that makes former
formats incompatible with the new ones. This section lists all versions, related features and
breaking changes.

10.1 20240723.13

Warning: This update changes the existing format of specification and dataflow.

Commit SHA - TODO

• Added includeGraphs field allowing to include graphs in the specification as subgraphs

• Added include field allowing to include partial specification to the specification

• Replaced graph field with graphs list

• The default graph now can be:

– the first entry in the graphs list

– the graph from graphs, where id of the graph is equal to entryGraph

• Replaced subgraphs in specification with graphs that have the exact same format as reg-
ular graphs

• Introduced externalName for graph nodes

• Fixed list type for properties - now they can be defined as lists in the graph, and dis-
play/modified as space-separated entries

• Improved Markdown-based rendering of description

81

10.2 20230523.12

Warning: This update changes the existing format of specification and dataflow.

Commit SHA - 006998910f871da00c49ef00625e5d8bccf3a9c3

• Introduced changes in dataflow and specification formats:

– Removed interfaces property from graphs, which were used to define interface
nodes for subgraphs.

– Instead of “interface nodes”, a new property was added to regular interfaces of nodes,
called externalName.

– externalName, when not empty, indicates that the interface is an outer interface of
the subgraph, which should be exposed with the name from this field.

10.3 20230830.11

Warning: This update changes the existing format of specification and dataflow.

Commit SHA - 0bee99e152a408650590bb6ea4210e96502b33ef

• Introduced changes in dataflow and specification formats:

– type -> name for dataflows for consistency with specification naming

– name -> instanceName for dataflows to make it more explicit and avoid conflicts

– type -> layer for nodes in specification. This property is now also optional.

– nodeTypes -> nodeLayers in layers keywords in metadata

– checkbox -> bool for property type

– graphTemplateInstances -> subgraphs for dataflow and specification.

• Added converter from version 20230824.10 to 20230523.12

• Added abstract parameter for node types to define abstract types.

• Added isCategory parameter that allows defining category nodes which serve both as a
node and category.

Antmicro 82

10.4 20230824.10

Commit SHA - 6ce3bf106353bc58fb8e7217b9bc8aa7db9ebd20

• Choosing an entry graph that is rendered to the user when loading a subgraph dataflow
is now possible using the entryGraph property.

10.5 20230824.9

Commit SHA - de31d01d9b6591993559e3b10851815f3320e545

• Introduced description keyword for nodes that allows displaying Markdown-based de-
scription in a sidebar.

10.6 20230818.8

Commit SHA - d4abcc80bce3e280120078a47d784eff92821a8a

• Introduced group keyword for checkbox property which allows defining groups of proper-
ties that can be disabled.

10.7 20230817.7

Commit SHA - 5946db06d8f42a33934a07fba95634aa8a70c78e

• Format of subgraph dataflows and specifications is redesigned. Details can be found in
Dataflow format and Specification format.

• Dataflow

– SubgraphIO was renamed to interfaces and its properties were changed.

– Connections are now defined using connections property instead of
nodeInterfaceId keyword.

• Specification

– id property for nodes and connections in subgraphs is no longer required.

– Connections are now defined using connections property instead of nodeInterface
keyword.

Antmicro 83

10.8 20230809.6

Commit SHA - 59b04f8bc9cd0ce1cb757dcc4027750e1275d935

• Introduced anchors for connections, which is a list of coordinates that allows rendering
custom connections shapes.

10.9 20230619.5

Commit SHA - 84fe865ca44b3a80b87a2be418eedc1d1c025ee4

• Introduced defaultInterfaceGroups groups of interfaces that are enabled by default.

• Implemented more verbose error logging both for interfaces and interface groups.

10.10 20230619.4

Commit SHA - bdc4b2fb998ed9d6318a676d4ac77f92c1603d39

• Introduced interfaceGroups and enabledInterfaceGroups keywords that allow defining
groups of interfaces.

• Introduced arrays of interfaces that can be easily created using array keyword.

• Simplified dataflows as interfaces that have no connections are no longer saved into out-
put .json files.

10.11 20230619.3

Commit SHA - 84559ae8327d7aa214c388200c5b48d112021679

• Introduced two new keywords to the specification’s metadata:

– backgroundSize - defines size of the background grid. It has strictly visual effects.

– movementStep - minimal node movement step.

• Added additionalData for storing some node-related data, not relevant to Pipeline Man-
ager

• Changed connectionSide to side in dataflow and specification

• type of interface now can be either a single string or a list of strings.

• Introduced optional metadata keyword layout specifying algorithm used for automatic
node position calculation.

• Introduced randomizedOffset keyword that adds a random offset to connections so that a
layout from complex graphs can be created easier. This value propagates into dataflows.

Antmicro 84

10.12 20230615.2

Commit SHA - 711ea7224e30d342924319c3964f1cb076939a29

• Introduced inheritance mechanism in specification - for each node type it is possible to
specify extends list that provides information which are the base classes for a given type.

10.13 20230615.1

Commit SHA - 4e0cf99ccaa5bc3513804e8184b907ed0230985f

• Introduced versioning for dataflow and specification format, starting with version
20230615.1. Pipeline Manager saves the current version in a dataflow save so that when
loading a dataflow an appropriate message is displayed.

• Implemented a dataflow format converter that can apply a range of patches so that an
obsolete dataflow can be updated to the current format.

Antmicro 85

CHAPTER

ELEVEN

DEMONSTRATION OF THE FRONTEND

To see the work of the frontend check one of the below examples:

• Example of a more complex graph with nodes as interfaces, inheritance and more

• Example of a graph with dynamic number of interfaces

86

• Example of the graph with include mechanisms

• Example of the graph with top-level interfaces exposed

Antmicro 87

• Example of graph with inheritance

• Example of Input-Output interfaces

Antmicro 88

• Example of interface grouping

• Example of graphs with connection loopbacks

Antmicro 89

• Example of Multiple Input-Output node

• Example of the graph with graph nodes

Antmicro 90

Antmicro 91

INDEX

A
add_include() (pipeline_manager.specification_builder.SpecificationBuilder

method), 63
add_include_subgraph()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 63

add_node_description()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 63

add_node_type()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 64

add_node_type_additional_data()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 64

add_node_type_as_category()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 64

add_node_type_category()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 65

add_node_type_from_spec()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 65

add_node_type_icon()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 65

add_node_type_interface()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 65

add_node_type_parent()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 66

add_node_type_property()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 66

add_node_type_property_group()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 67

add_node_type_url()
(pipeline_manager.specification_builder.SpecificationBuilder

method), 68
add_subgraph_from_spec()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 68

C
create_and_validate_spec()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 68

create_connection()
(pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph
method), 76

create_graph() (pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder
method), 74

create_node() (pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph
method), 76

create_property()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 69

D
DataflowGraph (class in

pipeline_manager.dataflow_builder.dataflow_graph),
76

G
get() (pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph

method), 77
get() (pipeline_manager.dataflow_builder.entities.Node

method), 78
get_by_id() (pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph

method), 77
get_node_description()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 69

GraphBuilder (class in
pipeline_manager.dataflow_builder.dataflow_builder),
74

I
Interface (class in

92

pipeline_manager.dataflow_builder.entities),
79

InterfaceConnection (class in
pipeline_manager.dataflow_builder.entities),
80

L
load_graphs() (pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder

method), 75
load_specification()

(pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder
method), 75

M
metadata_add_interface_styling()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 70

metadata_add_layer()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 70

metadata_add_param()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 70

metadata_add_url()
(pipeline_manager.specification_builder.SpecificationBuilder
method), 70

move() (pipeline_manager.dataflow_builder.entities.Node
method), 78

N
Node (class in pipeline_manager.dataflow_builder.entities),

78

P
Property (class in

pipeline_manager.dataflow_builder.entities),
80

R
register_category()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 71

reset() (pipeline_manager.specification_builder.SpecificationBuilder
method), 71

S
save() (pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder

method), 75
set_node_description()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 71

set_property() (pipeline_manager.dataflow_builder.entities.Node
method), 78

SpecificationBuilder (class in
pipeline_manager.specification_builder),
63

T
to_json() (pipeline_manager.dataflow_builder.dataflow_graph.DataflowGraph

method), 77
to_json() (pipeline_manager.dataflow_builder.entities.Interface

method), 79
to_json() (pipeline_manager.dataflow_builder.entities.InterfaceConnection

method), 80
to_json() (pipeline_manager.dataflow_builder.entities.Node

method), 79
to_json() (pipeline_manager.dataflow_builder.entities.Property

method), 80

U
update_spec_from_other()

(pipeline_manager.specification_builder.SpecificationBuilder
method), 71

V
validate() (pipeline_manager.dataflow_builder.dataflow_builder.GraphBuilder

method), 75

Antmicro 93

	Introduction
	Pipeline Manager
	Prerequisites
	Building and running
	Static HTML application
	Web application
	Miscellaneous
	Development
	Validation
	Cleanup

	Using Pipeline Manager as a Python module

	Specification format
	Format description
	Metadata
	Layer
	URL class
	Interface style
	Navbar item

	Node
	Interface
	Property
	Group

	Node type inheritance

	Interface Groups
	Included Graphs

	Example

	Dataflow format
	Format description
	Graph
	Node
	Property
	Interface

	Connection
	Anchor

	Panning
	Enabled Interface Groups

	Example dataflow

	Front-end features
	Graph manipulation
	Settings
	Notifications
	Full screen
	Editor menu
	Working with the server
	URL parameters for the frontend
	Passing JSON objects directly
	Testing the front-end features

	Communication with an external application
	Communication protocol
	Communication structure

	Response messages types - sent by the external application
	OK
	ERROR
	PROGRESS
	WARNING

	API Specification
	Frontend API
	graph_get
	node_get
	properties_get
	properties_change
	position_change
	nodes_change
	connections_change
	graph_change
	progress_change
	metadata_change
	viewport_center
	terminal_add
	terminal_write
	notification_send
	specification_change

	Backend API
	status_get
	external_app_connect
	connected_frontends_get

	External App API
	specification_get
	app_capabilities_get
	dataflow_import
	dataflow_validate
	dataflow_run
	dataflow_stop
	dataflow_export
	frontend_on_connect
	properties_on_change
	position_on_change
	nodes_on_change
	connections_on_change
	graph_on_change
	metadata_on_change
	viewport_on_center
	terminal_read

	Common Types
	empty
	null_or_empty
	node_object
	dataflow_object
	specification_object
	properties_diff
	position_diff
	nodes_diff
	connections_diff
	metadata
	external_endpoint_return_type

	Custom procedures

	Implementing a Python-based client for Pipeline Manager
	Sending JSON-RPC requests to Pipeline Manager

	Sample third-party server
	Specification builder
	Example usage of the SpecificationBuilder
	Creating the builder
	Creating node types
	Add node type “as category”
	Adding interfaces to node types
	Adding properties to node types
	Adding node type descriptions
	Adding metadata
	Adding URLs to node types
	Constructing and validating the specification

	SpecificationBuilder documentation

	Dataflow graph builder
	Examples of GraphBuilder usage
	Creating GraphBuilder
	Obtaining a dataflow graph
	Creating a node
	Getting a node
	Getting a node matching multiple criteria
	Manipulating a node

	Specification of GraphBuilder
	Specification of DataflowGraph
	Specification of Node
	Specification of Interface
	Specification of Connection
	Specification of Property

	Dataflow and Specification format changelog
	20240723.13
	20230523.12
	20230830.11
	20230824.10
	20230824.9
	20230818.8
	20230817.7
	20230809.6
	20230619.5
	20230619.4
	20230619.3
	20230615.2
	20230615.1

	Demonstration of the frontend
	Index

