@ antmicro

Antmicro

Protoplaster - docs example

2025-09-02

5

6

Introduction

Protoplaster Server API Reference

2.1 ErrorHandling
2.2 ConfigsAPI,
23 TestRunsAPI.
Protoplaster

3.1 Imstallation
3.2 Usage o i it i e e
3.3 Base modules parameters
3.4 Writing additional modules
3.5 Protoplaster testreport
3.6 Systemreport

Protoplaster tests

4.1 I2CdevicestestS . . . v v v v v v i e e
4.2 CamerasensortestS v v v
4.3 GPIOStestS . . v v v v v e e e e e e e e e e

Protoplaster tests report

Protoplaster system report

HTTP Routing Table

CONTENTS

15

.................. 15
.................. 15
.................. 16

17

18

19

CHAPTER
ONE

INTRODUCTION

This documentation serves as an example of how individual projects documentation can look
like.

The second chapter contains reference of remote API when running Protoplaster in server mode.
The third chapter contains information from the README file.

The last chapter is generated from the sample test.yml file which can be found in the README.
Its purpose is to demonstrate the documentation generated to describe test procedures used in
a project.

CHAPTER
TWO

PROTOPLASTER SERVER API REFERENCE

2.1 Error Handling

Should an error occur during the handling of an API request, either because of incorrect request
data or other endpoint-specific scenarios, the server will return an error structure containing a
user-friendly description of the error. An example error response is shown below:

{

"error”: "test start failed”

b

2.2 Configs API

GET /api/v1/configs
Fetch a list of configs

Status Codes
¢ 200 OK - no error

Response JSON Array of Objects
* created (string) — UTC datetime of config upload (RFC822)
* npame (string) — config name

Example Request

GET /api/v1/configs HTTP/1.1
Accept: application/json, text/javascript

Example Response

HTTP/1.1 200 OK
Content-Type: application/json

L
{
"name": "sample_config.yaml”,
"created"”: "Mon, 25 Aug 2025 16:58:35 +0200",
}
]

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

| @antmlcro

POST /api/v1/configs
Upload a test config

Form Parameters
* file — yaml file with the test config
Status Codes
* 200 OK - no error, config was uploaded
* 400 Bad Request — file was not provided

Example Request

POST /api/v1/configs HTTP/1.1

Accept: */*

Content-Length: 4194738

Content-Type: multipart/form-data; boundary=-----------—-—-—-————-————-
—0f8f9642db3a513e

—————————————————————————— 0f8f9642db3a513e
Content-Disposition: form-data; name="file"; filename="config.yaml"
Content-Type: application/octet-stream

<file contents>
—————————————————————————— 0f8f9642db3a513e—-

Example Response

[HTTP/1 1 200 OK }

GET /api/v1/configs/(string: config name)
Fetch information about a config

Status Codes
¢ 200 OK - no error
* 404 Not Found — config does not exist
Response JSON Object
* created (string) — UTC datetime of config upload (RFC822)
* config_name (string) — config name

Example Request

GET /api/v1/configs/sample_config.yaml HTTP/1.1
Accept: application/json, text/javascript

Example Response

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

Antmicro 3

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

1 ;%)antmlcro

(continued from previous page)
{
"name": "sample_config.yaml”,
"created”: "Mon, 25 Aug 2025 16:58:35 +0200",
}

GET /api/v1/configs/(string: config name)/file
Fetch a config file

Status Codes
* 200 OK - no error
* 404 Not Found — config does not exist

>file text/yaml
YAML config file

Example Request

[GET /api/v1/configs/sample_config.yaml/file HTTP/1.1

Example Response

HTTP/1.1 200 OK
Content-Type: text/yaml
Content-Disposition: attachment; filename="sample_config.yaml”

base:
network:
- interface: enp14s0

L

DELETE /api/v1/configs/(string: name)
Remove a test config

Parameters
* name — filename of the test config
Status Codes
* 200 OK - no error, config was removed
* 404 Not Found - file was not found

Example Request

[DELETE /api/v1/configs/sample_config.yaml HTTP/1.1

Example Response

[HTTP/1 1 200 OK }

Antmicro 4

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

| @antmlcro

2.3 Test Runs API

GET /api/v1/test-runs
Fetch a list of test runs

Status Codes
¢ 200 OK - no error
Response JSON Array of Objects
* run_id (integer) —runid
* config_name (string) — name of config for this test run
e created (string) — UTC datetime of test run start (RFC822)
* completed (string) — UTC completion time (RFC822)
Response JSON Object

* status (string) — test run status, one of: * pending - accepted but not
started * running - currently executing * finished - completed success-
fully * failed - error during execution * aborted - stopped by user or
system

Example Request

GET /api/v1/test-runs HTTP/1.1
Accept: application/json, text/javascript

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
L
{
"run_id": 1,
"config_name": "configil.yaml"
"status”: "finished”,
"created"”: "Mon, 25 Aug 2025 15:56:35 +0200",
}
{
"run_id": 2,
"config_name": "config2.yaml"
"status”: "running”,
"created"”: "Mon, 25 Aug 2025 16:58:35 +0200",
}
]

POST /api/v1/test-runs
Trigger a test run

Status Codes

* 200 OK - no error, test run was triggered

Antmicro 5

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

| %)antmlcro

* 400 Bad Request - file was not provided or invalid overrides

Request JSON Object

* config_name (string) — name of config for this test run

* overrides (object) — partial configuration object whose fields override

or extend the base configuration

Example Request

{

n

POST /api/v1/test-runs/ HTTP/1.1
Content-Type: application/json
Accept: application/json, text/javascript

{ "name": "Sensor name”, "address": "0x19" },
{ "name"”: "New sensor"”, "address": "0x20" }

config_name”: "configl.yaml"”,
overrides”: {
"base": {
"i2c": [
{
"bus”: 1,
"devices": [
]
}
1,
"camera": [
{
"device": "/dev/video2",
"camera_name”: "usb-cam”,
"driver_name": "uvcvideo”
}
]
}

Example Response

[HTTP/1 1 200 OK

DELETE /api/v1/test-runs/(int: identifier)
Cancel a test run

Parameters

e identifier — test run identifier

Status Codes
e 200 OK —no error

* 400 Bad Request — test run not in progress

¢ 404 Not Found — test run does not exist

Antmicro

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

| @antmlcro

Example Request

{DELETE /api/v1/test-runs/1 HTTP/1.1

Example Response

[HTTP/1 1 200 OK

GET /api/v1/test-runs/(int: identifier)
Fetch information about a test run

Parameters
* identifier - test run identifier
Status Codes
¢ 200 OK - no error
* 404 Not Found - test run does not exist
Response JSON Object
e id (integer) — test run identifier
* created (string) — UTC creation time (RFC822)
* completed (string) — UTC completion time (RFC822)

* status (string) — test run status, one of: * pending - accepted but not
started * running - currently executing * finished - completed success-
fully * failed - error during execution * aborted - stopped by user or
system

Example Request

[GET /api/v1/test-runs/1 HTTP/1.1

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
{
"run_id": 1,
"config_name": "configil.yaml"
"status”: "finished”,
"created”: "Mon, 25 Aug 2025 15:56:35 +0200",
}

L

GET /api/v1/test-runs/(int: identifier)/report
Fetch test run report

Parameters
e identifier — test run identifier

Status Codes

Antmicro 7

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

| @antmlcro

* 200 OK - no error
* 404 Not Found - test run not completed or does not exist

>file text/csv
CSV file containing the full test report

Example request
GET /api/vl/runs/1/report HTTP/1.1
Example response

HTTP/1.1 200 OK Content-Type: text/csv Content-Disposition: attachment;
filename="report-run-12345.csv”

device name,test name,module,duration,message,status
enpl4s0,exist,test.py::TestNetwork::test_exist,0.0007359918672591448,,passed

Antmicro 8

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

CHAPTER

THREE
PROTOPLASTER
Copyright (c) 2022-2025 Antmicro
An automated framework for platform testing (Hardware and BSPs).
Currently includes tests for:
e [12C
* GPIO
¢ Camera
* FPGA
3.1 Installation
[pip install git+https://github.com/antmicro/protoplaster.git }

3.2 Usage

N

usage: protoplaster [-h] [-t TEST_FILE] [-g GROUP] [--list-groups] [-o OUTPUT] [--
—csv CSV] [--csv-columns CSV_COLUMNS] [--generate-docs] [-c CUSTOM_TESTS]

options:
-h, --help show this help message and exit
-t TEST_FILE, --test-file TEST_FILE
Path to the test yaml description
-g GROUP, --group GROUP
Group to execute
--list-groups List possible groups to execute
-0 OUTPUT, --output OUTPUT
A junit-xml style report of the tests results
--csv CSV Generate a CSV report of the tests results
--csv-columns CSV_COLUMNS
Comma-separated list of columns to be included in.
—generated CSV
--generate-docs Generate documentation
-c CUSTOM_TESTS, --custom-tests CUSTOM_TESTS
Path to the custom tests sources
--report-output REPORT_OUTPUT

(continues on next page)

https://www.antmicro.com

| ;%)antmlcro

(continued from previous page)
Proplaster report archive
--system-report-config SYSTEM_REPORT_CONFIG
Path to the system report yaml config file
--sudo Run as sudo

Protoplaster expects a yaml file describing tests as an input. The yaml file should have a struc-
ture specified as follows:

base: # A group specifier
i2c: # A module specifier
- bus: @ # An interface specifier
devices: # Multiple instances of devices can be defined in one module

- name: "Sensor name”
address: 0x3c # The given device parameters determine which tests will be.
—run for the module

- bus: @
devices:

- name: "I2C-bus multiplexer”
address: 0x70

camera:

- device: "/dev/video@"
camera_name: "vivid"
driver_name: "vivid"

- device: "/dev/video2"
camera_name: "vivid"
driver_name: "vivid"
save_file: "frame.raw”

additional:

gpio:

- number: 20
value: 1

3.2.1 Groups

In the YAML file, you can define different groups of tests to run them for different use cases.
In the YAML file example, there are two groups defined: base and additional. Protoplaster,
when run without a defined group, will execute every test in each group. When the group is
specified with the parameter -g or --group, only the tests in the specified group are going to be
run. You can also list existing groups in the YAML file, simply run protoplaster --list-groups
test.yaml.

3.3 Base modules parameters

Each base module requires parameters for test initialization. These parameters describe the
tests and are passed to the test class as its attributes.

Antmicro 10

| @antmlcro

3.3.1 12C
Required parameters:
* bus - i2c bus to be checked
* name - name of device to be detected

e address - address of the device to be detected on the indicated bus

3.3.2 GPIO
Required parameters:

* number - GPIO pin number

* value - value written to that pin
Optional parameters:

* gpio_name - name of the sysfs GPIO interface after exporting

3.3.3 Cameras

Required parameters:
* device - path to the camera device (eg. /dev/videoO)
* camera_name - expected camera name
* driver_name - expected driver name

Optional parameters:

* save_file - a path which the tested frame is saved to (the frame is saved only if this
parameter is present)

3.3.4 FPGA

Required parameters:
* sysfs_interface - path to a sysfs interface for flashing the bitstream to the FPGA

* bitstream_path - path to a test bitstream that is going to be flashed

3.4 Writing additional modules

Apart from base modules available in Protoplaster, you can provide your own extended modules.
The module should contain a test.py file in the root path. This file should contain a test
class that is decorated with ModuleName ("") from the protoplaster.conf.module package. This
decorator tells Protoplaster what the name of the module is. With this information, Protoplaster
can correctly initialize the test parameters. The test class should contain a name() method. Its
return value is used for the device_name field in CSV output.

The description of the external module should be added to the YAML file as for other tests. By
default, external modules are expected in the /etc/protoplaster directory. If you want to store
them in a different path, use the --custom-tests argument to set your own path. Individual
tests run by Protoplaster should be present in the main class in the test.py file. The class’s
name should start with Test, and every test’s name in this class should also start with test. An
example of an extended module test:

Antmicro 11

| ;%)antmlcro

from protoplaster.conf.module import ModuleName

@ModuleName("additional_camera™)
class TestAdditionalCamera:
{% macro TestAdditionalCamera(prefix) -%}
Additional camera tests
{% do prefix.append('') %}
This module provides tests dedicated to camera sensors on specific video node:
{%- endmacro %}

nnn

def test_exists(self):
{% macro test_exists(device) -%}
check if the path exists
{%- endmacro %}

nnn

assert self.path == "/dev/video@”

And a YAML definition:

base:
additional_camera:
- path: "/dev/video@”
- path: "/dev/video1l”

3.5 Protoplaster test report

Protoplaster provides protoplaster-test-report, a tool to convert test CSV output into a
HTML or Markdown table.

usage: protoplaster-test-report [-h] [-i INPUT_FILE] -t {md,html} [-o OUTPUT_FILE]

options:
-h, --help show this help message and exit
-i INPUT_FILE, --input-file INPUT_FILE
Path to the csv file
-t {md,html}, --type {md,html}
Output type
-0 OUTPUT_FILE, --output-file OUTPUT_FILE
Path to the output file

Antmicro 12

| @antmlcro

3.6 System report

Protoplaster provides protoplaster-system-report, a tool for obtaining information about sys-
tem state and configuration. It executes a list of commands and saves their outputs. The outputs
are stored in a single zip archive along with an HTML summary.

3.6.1 Usage

usage: protoplaster-system-report [-h] [-o OUTPUT_FILE] [-c CONFIG] [--sudo]

options:

-h, --help show this help message and exit
-0 OUTPUT_FILE, --output-file OUTPUT_FILE

Path to the output file
-c CONFIG, --config CONFIG

Path to the YAML config file
--sudo Run as sudo

The YAML config contains a list of actions to perform. A single action is described as follows:

report_item_name:

run: script
summary:
- title: summary_title
run: summary_script
output: script_output_file
superuser: required | preferred
on-fail:

* run - command to be run
* summary — a list of summary generators, each one with fields:
— title — summary title

— run — command that generates the summary. This command gets the output of the
original command as stdin. This field is optional; if not specified, the output is placed
in the report as-is.

* output - output file for the output of run.

* superuser — optional, should be specified if the command requires elevated privileges to
run. Possible values:

— required — protoplaster-system-report will terminate if the privilege requirement
is not met

— preferred — if the privilege requirement is not met, a warning will be issued and this
particular item won’t be included in the report

* on-fail — optional description of an item to run in case of failure. It can be used to run
an alternative command when the original one fails or is not available.

Example config file:

Antmicro 13

| @antmlcro

uname:
run: uname -a
summary:
- title: os info
run: cat
output: uname.out
dmesg:
run: dmesg
summary:
- title: usb
run: grep usb
- title: v4l
run: grep v4l
output: dmesg.out
superuser: required
ip:
run: ip a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ip_table.py "$(cat)”
output: ip.out
on-fail:
run: ifconfig -a
summary :
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ifconfig_table.py "$(cat)”
output: ifconfig.out

3.6.2 Running as root

By default, sudo doesn’t preserve PATH. To run protoplaster-system-report installed by a non-
root user as root, invoke protoplaster-system-report --sudo

Antmicro 14

CHAPTER
FOUR

PROTOPLASTER TESTS

O Note

This page has been autogenerated from a Protoplaster tests definition file.

To perform hardware/BSP tests and open-source Protoplaster framework has been used.

Running Protoplaster runs the tests described in the following chapters:

4.1 12C devices tests

This module provides tests dedicated to i2c devices on specific buses:
* /dev/i2c-0:
— detection test for Sensor name on address: 0x3c
* /dev/i2c-0:

— detection test for I2C-bus multiplexer on address: 0x70

4.2 Camera sensor tests

This module provides tests dedicated to V4L devices on specific video node:
* /dev/videoO:
— try to capture frame
— check if the camera sensor name is vivid
— check if the camera sensor driver name is vivid
* /dev/video2:
— try to capture frameand store it to frame.raw file
— check if the camera sensor name is vivid

— check if the camera sensor driver name is vivid

15

https://github.com/antmicro/protoplaster

| %)antmlcro

4.3 GPIOs tests

This module provides tests dedicated to GPIO on specific pin number
* /sys/class/gpio/gpio20:

— write 1 and read back to confirm

Antmicro 16

CHAPTER

FIVE

PROTOPLASTER TESTS REPORT

device test module dura- message sta-
name name tion tus
/dev/i2c- ad- test.py::TestI2C::test_ar 1ms AssertionError: No device failed
0 dresses 82us found at address: 60
/dev/i2c- ad- test.py::TestI2C::test_ar 1ms AssertionError: No device failed
0 dresses 25us found at address: 112
/dev/video(frame test.py::TestCamera::te 1ms AssertionError: Device failed
794us /dev/video0 doesn’t ex-
ist
/dev/video(de- test.py::TestCamera::te 1ms AssertionError: Device failed
vice nan 258us /dev/videoO doesn't ex-
ist
/dev/video(driver n test.py::TestCamera::te 801us AssertionError: Device failed
/dev/videoO doesn’t ex-
ist
/dev/video: frame test.py::TestCamera::te 1ms AssertionError: Device failed
231us /dev/video2 doesn’t ex-
ist
/dev/video: de- test.py::TestCamera::te 1ms AssertionError: Device failed
vice nan 141us /dev/video2 doesn’t ex-
ist
/dev/videoZ driver n test.py::TestCamera::te 1ms AssertionError: Device failed
105us /dev/video2 doesn’t ex-
ist
/sys/class/g read_wri test.py::TestGPIO::test 102us AssertionError: Sysfs interface failed

for GPIO does not exist

17

CHAPTER
SIX

PROTOPLASTER SYSTEM REPORT

Protoplaster provides protoplaster-system-report, a tool to obtain information about system
state and configuration. It executes a list of commands and saves their outputs. The outputs
are stored in a single zip archive together with an HTML summary. An example summary can
be found here.

The following config was used to generate the example:

uname:
run: uname -a
summary::
- title: os info
run: cat
output: uname.out
dmesg:
run: dmesg
summary:
- title: usb
run: grep usb
- title: v4l
run: grep v4l
output: dmesg.out
superuser: required
ip:
run: ip a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ip_table.py "$(cat)”
output: ip.out
on-fail:
run: ifconfig -a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ifconfig_table.py "$(cat)”
output: ifconfig.out

18

HTTP ROUTING TABLE

/api

GET /api/v1/configs, 2

GET /api/v1/configs/(string:config_name),
3

GET /api/vi1/configs/(string:config_name)/file,
4

GET /api/v1/test-runs, 5

GET /api/v1/test-runs/(int:identifier), 7

GET /api/v1/test-runs/(int:identifier)/report,
7

POST /api/v1/configs, 2

POST /api/v1/test-runs, 5

DELETE /api/v1/configs/(string:name), 4

DELETE /api/v1/test-runs/(int:identifier),
6

19

	Introduction
	Protoplaster Server API Reference
	Error Handling
	Configs API
	Test Runs API

	Protoplaster
	Installation
	Usage
	Groups

	Base modules parameters
	I2C
	GPIO
	Cameras
	FPGA

	Writing additional modules
	Protoplaster test report
	System report
	Usage
	Running as root

	Protoplaster tests
	I2C devices tests
	Camera sensor tests
	GPIOs tests

	Protoplaster tests report
	Protoplaster system report
	HTTP Routing Table

