
Antmicro

Protoplaster - docs example

2024-07-03

CONTENTS

1 Introduction 1

2 Protoplaster 2
2.1 Installation . 2
2.2 Usage . 2
2.3 Base modules parameters . 4
2.4 Writing additional modules . 5
2.5 Protoplaster test report . 6
2.6 System report . 6

3 Protoplaster tests 9
3.1 I2C devices tests . 9
3.2 Camera sensor tests . 9
3.3 GPIOs tests . 10

4 Protoplaster tests report 11

5 Protoplaster system report 12

i

CHAPTER

ONE

INTRODUCTION

This documentation serves as an example of how individual projects documentation can look
like.

The second chapter contains information from the README file.

The last chapter is generated from the sample test.yml file which can be found in the README.
Its purpose is to demonstrate the documentation generated to describe test procedures used in
a project.

1

CHAPTER

TWO

PROTOPLASTER

Copyright (c) 2022-2024 Antmicro

An automated framework for platform testing (Hardware and BSPs).

Currently includes tests for:

• I2C

• GPIO

• Camera

• FPGA

2.1 Installation

pip install git+https://github.com/antmicro/protoplaster.git

2.2 Usage

usage: protoplaster [-h] [-t TEST_FILE] [-g GROUP] [--list-groups] [-o OUTPUT] [--
→˓csv CSV] [--csv-columns CSV_COLUMNS] [--generate-docs] [-c CUSTOM_TESTS]

options:
-h, --help show this help message and exit
-t TEST_FILE, --test-file TEST_FILE

Path to the test yaml description
-g GROUP, --group GROUP

Group to execute
--list-groups List possible groups to execute
-o OUTPUT, --output OUTPUT

A junit-xml style report of the tests results
--csv CSV Generate a CSV report of the tests results
--csv-columns CSV_COLUMNS

Comma-separated list of columns to be included in␣
→˓generated CSV
--generate-docs Generate documentation
-c CUSTOM_TESTS, --custom-tests CUSTOM_TESTS

(continues on next page)

2

https://www.antmicro.com

(continued from previous page)

Path to the custom tests sources
--report-output REPORT_OUTPUT

Proplaster report archive
--system-report-config SYSTEM_REPORT_CONFIG

Path to the system report yaml config file
--sudo Run as sudo

Protoplaster expects a yaml file describing tests as an input. The yaml file should have a struc-
ture specified as follows:

base: # A group specifier
i2c: # A module specifier
- bus: 0 # An interface specifier
devices: # Multiple instances of devices can be defined in one module
- name: "Sensor name"

address: 0x3c # The given device parameters determine which tests will be␣
→˓run for the module
- bus: 0
devices:
- name: "I2C-bus multiplexer"

address: 0x70
camera:
- device: "/dev/video0"
camera_name: "vivid"
driver_name: "vivid"

- device: "/dev/video2"
camera_name: "vivid"
driver_name: "vivid"
save_file: "frame.raw"

additional:
gpio:
- number: 20
value: 1

2.2.1 Groups

In the YAML file, you can define different groups of tests to run them for different use cases.
In the YAML file example, there are two groups defined: base and additional. Protoplaster,
when run without a defined group, will execute every test in each group. When the group is
specified with the parameter -g or --group, only the tests in the specified group are going to be
run. You can also list existing groups in the YAML file, simply run protoplaster --list-groups
test.yaml.

Antmicro 3

2.3 Base modules parameters

Each base module requires parameters for test initialization. These parameters describe the
tests and are passed to the test class as its attributes.

2.3.1 I2C

Required parameters:

• bus - i2c bus to be checked

• name - name of device to be detected

• address - address of the device to be detected on the indicated bus

2.3.2 GPIO

Required parameters:

• number - GPIO pin number

• value - value written to that pin

Optional parameters:

• gpio_name - name of the sysfs GPIO interface after exporting

2.3.3 Cameras

Required parameters:

• device - path to the camera device (eg. /dev/video0)

• camera_name - expected camera name

• driver_name - expected driver name

Optional parameters:

• save_file - a path which the tested frame is saved to (the frame is saved only if this
parameter is present)

2.3.4 FPGA

Required parameters:

• sysfs_interface - path to a sysfs interface for flashing the bitstream to the FPGA

• bitstream_path - path to a test bitstream that is going to be flashed

Antmicro 4

2.4 Writing additional modules

Apart from base modules available in Protoplaster, you can provide your own extended modules.
The module should contain a test.py file in the root path. This file should contain a test
class that is decorated with ModuleName("") from the protoplaster.conf.module package. This
decorator tells Protoplaster what the name of the module is. With this information, Protoplaster
can correctly initialize the test parameters. The test class should contain a name() method. Its
return value is used for the device_name field in CSV output.

The description of the external module should be added to the YAML file as for other tests. By
default, external modules are expected in the /etc/protoplaster directory. If you want to store
them in a different path, use the --custom-tests argument to set your own path. Individual
tests run by Protoplaster should be present in the main class in the test.py file. The class’s
name should start with Test, and every test’s name in this class should also start with test. An
example of an extended module test:

from protoplaster.conf.module import ModuleName

@ModuleName("additional_camera")
class TestAdditionalCamera:

"""
{% macro TestAdditionalCamera(prefix) -%}
Additional camera tests

{% do prefix.append('') %}
This module provides tests dedicated to camera sensors on specific video node:
{%- endmacro %}
"""

def test_exists(self):
"""
{% macro test_exists(device) -%}

check if the path exists
{%- endmacro %}
"""
assert self.path == "/dev/video0"

And a YAML definition:

base:
additional_camera:
- path: "/dev/video0"
- path: "/dev/video1"

Antmicro 5

2.5 Protoplaster test report

Protoplaster provides protoplaster-test-report, a tool to convert test CSV output into a
HTML or Markdown table.

usage: protoplaster-test-report [-h] [-i INPUT_FILE] -t {md,html} [-o OUTPUT_FILE]

options:
-h, --help show this help message and exit
-i INPUT_FILE, --input-file INPUT_FILE

Path to the csv file
-t {md,html}, --type {md,html}

Output type
-o OUTPUT_FILE, --output-file OUTPUT_FILE

Path to the output file

2.6 System report

Protoplaster provides protoplaster-system-report, a tool for obtaining information about sys-
tem state and configuration. It executes a list of commands and saves their outputs. The outputs
are stored in a single zip archive along with an HTML summary.

2.6.1 Usage

usage: protoplaster-system-report [-h] [-o OUTPUT_FILE] [-c CONFIG] [--sudo]

options:
-h, --help show this help message and exit
-o OUTPUT_FILE, --output-file OUTPUT_FILE

Path to the output file
-c CONFIG, --config CONFIG

Path to the YAML config file
--sudo Run as sudo

The YAML config contains a list of actions to perform. A single action is described as follows:

report_item_name:
run: script
summary:
- title: summary_title
run: summary_script

output: script_output_file
superuser: required | preferred
on-fail: ...

• run - command to be run

• summary – a list of summary generators, each one with fields:

– title – summary title

Antmicro 6

– run – command that generates the summary. This command gets the output of the
original command as stdin. This field is optional; if not specified, the output is placed
in the report as-is.

• output - output file for the output of run.

• superuser – optional, should be specified if the command requires elevated privileges to
run. Possible values:

– required – protoplaster-system-report will terminate if the privilege requirement
is not met

– preferred – if the privilege requirement is not met, a warning will be issued and this
particular item won’t be included in the report

• on-fail – optional description of an item to run in case of failure. It can be used to run
an alternative command when the original one fails or is not available.

Example config file:

uname:
run: uname -a
summary:
- title: os info
run: cat

output: uname.out
dmesg:

run: dmesg
summary:
- title: usb
run: grep usb

- title: v4l
run: grep v4l

output: dmesg.out
superuser: required

ip:
run: ip a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ip_table.py "$(cat)"

output: ip.out
on-fail:
run: ifconfig -a
summary:

- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ifconfig_table.py "$(cat)"

output: ifconfig.out

Antmicro 7

2.6.2 Running as root

By default, sudo doesn’t preserve PATH. To run protoplaster-system-report installed by a non-
root user as root, invoke protoplaster-system-report --sudo

Antmicro 8

CHAPTER

THREE

PROTOPLASTER TESTS

Note: This page has been autogenerated from a Protoplaster tests definition file.

To perform hardware/BSP tests and open-source Protoplaster framework has been used.

Running Protoplaster runs the tests described in the following chapters:

3.1 I2C devices tests

This module provides tests dedicated to i2c devices on specific buses:

• /dev/i2c-0:

– detection test for Sensor name on address: 0x3c

• /dev/i2c-0:

– detection test for I2C-bus multiplexer on address: 0x70

3.2 Camera sensor tests

This module provides tests dedicated to V4L devices on specific video node:

• /dev/video0:

– try to capture frame

– check if the camera sensor name is vivid

– check if the camera sensor driver name is vivid

• /dev/video2:

– try to capture frameand store it to frame.raw file

– check if the camera sensor name is vivid

– check if the camera sensor driver name is vivid

9

https://github.com/antmicro/protoplaster

3.3 GPIOs tests

This module provides tests dedicated to GPIO on specific pin number

• /sys/class/gpio/gpio20:

– write 1 and read back to confirm

Antmicro 10

CHAPTER

FOUR

PROTOPLASTER TESTS REPORT

device name test name module duration mes-
sage

sta-
tus

/dev/i2c-0 addresses test.py::TestI2C::test_addresses 8ms 442us passed

/dev/i2c-0 addresses test.py::TestI2C::test_addresses 7ms 627us passed

/dev/video0 frame test.py::TestCamera::test_frame 232ms
723us

passed

/dev/video0 de-
vice_name

test.py::TestCamera::test_device_name207ms
117us

passed

/dev/video0 driver_name test.py::TestCamera::test_driver_name221ms
688us

passed

/dev/video2 frame test.py::TestCamera::test_frame 255ms
778us

passed

/dev/video2 de-
vice_name

test.py::TestCamera::test_device_name205ms
948us

passed

/dev/video2 driver_name test.py::TestCamera::test_driver_name204ms
747us

passed

/sys/class/gpio/20read_write test.py::TestGPIO::test_read_write12ms
412us

passed

11

CHAPTER

FIVE

PROTOPLASTER SYSTEM REPORT

Protoplaster provides protoplaster-system-report, a tool to obtain information about system
state and configuration. It executes a list of commands and saves their outputs. The outputs
are stored in a single zip archive together with an HTML summary. An example summary can
be found here.

The following config was used to generate the example:

uname:
run: uname -a
summary:
- title: os info
run: cat

output: uname.out
dmesg:
run: dmesg
summary:
- title: usb
run: grep usb

- title: v4l
run: grep v4l

output: dmesg.out
superuser: required

ip:
run: ip a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ip_table.py "$(cat)"

output: ip.out
on-fail:

run: ifconfig -a
summary:
- title: Network interfaces state
run: python3 $PROTOPLASTER_SCRIPTS/generate_ifconfig_table.py "$(cat)"

output: ifconfig.out

12

	Introduction
	Protoplaster
	Installation
	Usage
	Groups

	Base modules parameters
	I2C
	GPIO
	Cameras
	FPGA

	Writing additional modules
	Protoplaster test report
	System report
	Usage
	Running as root

	Protoplaster tests
	I2C devices tests
	Camera sensor tests
	GPIOs tests

	Protoplaster tests report
	Protoplaster system report

