
Antmicro

Topwrap

2024-05-15

DOCUMENTATION

1 Getting started 1
1.1 Installation . 1
1.2 Example usage . 2

2 Description files 6
2.1 Design Description . 6
2.2 IP description files . 8
2.3 Interface Description files . 11

3 Interconnect generation 12
3.1 Format . 12
3.2 Interconnect params . 13
3.3 Limitations . 13

4 Command-line Interface 14
4.1 Building design . 14
4.2 Connect Topwrap to Pipeline Manager . 14
4.3 Generating IP core description YAMLs . 15

5 Kenning Pipeline Manager 16
5.1 Run Topwrap with Pipeline Manager . 16
5.2 Pipeline Manager features . 19

6 FuseSoC 21

7 Setup 22

8 Code style 23
8.1 Lint with nox . 23
8.2 Lint with pre-commit . 23
8.3 Tools . 24

9 Tests 25
9.1 Test execution . 25
9.2 Test coverage . 26

10 Wrapper 27

11 IPWrapper class 28

12 IPConnect class 30

i

13 ElaboratableWrapper class 35

14 Wrapper Port 36

15 FuseSocBuilder 38

16 Interface definition 40

17 Config 41

18 Deducing interfaces 42
18.1 Step 1. - splitting ports into subsets . 42
18.2 Step 2. - matching ports with interface signal names 43
18.3 Step 3. - inferring interface direction . 43
18.4 Step 4. - computing interface matching score . 43

19 Examples 45

20 Future enhancements 46
20.1 Support for hierarchical block design in Pipeline Manager 46
20.2 Bus management . 46
20.3 Improve the process of recreating a design from a YAML file 46
20.4 Support for parsing SystemVerilog sources . 47
20.5 Provide a way to parse HDL sources from the Pipeline Manager level 47
20.6 Ability to produce top-level wrappers in VHDL 47
20.7 Library of open-source cores . 47
20.8 Integrating with other tools . 47

Index 48

ii

CHAPTER

ONE

GETTING STARTED

1.1 Installation

1. Install required system packages:

Debian:

apt install -y git g++ make python3 python3-pip antlr4 libantlr4-runtime-dev␣
→˓yosys npm

Arch:

pacman -Syu git gcc make python3 python-pip antlr4 antlr4-runtime yosys npm

Fedora:

dnf install git g++ make python3 python3-pip python3-devel antlr4 antlr4-cpp-
→˓runtime-devel yosys npm

2. Install the Topwrap package (It is highly recommended to run this step in a Python virtual
environment, e.g. venv):

pip install .

Note: To use topwrap parse command you also need to install optional dependencies:

pip install ".[topwrap-parse]"

On Arch-based distributions a symlink to antlr4 runtime library needs to created and an envi-
ronment variable set:

ln -s /usr/share/java/antlr-complete.jar antlr4-complete.jar
ANTLR_COMPLETE_PATH=`pwd` pip install ".[topwrap-parse]"

On Fedora-based distributions symlinks need to be made inside /usr/share/java directory it-
self:

sudo ln -s /usr/share/java/stringtemplate4/ST4.jar /usr/share/java/
→˓stringtemplate4.jar
sudo ln -s /usr/share/java/antlr4/antlr4.jar /usr/share/java/antlr4.jar

(continues on next page)

1

https://docs.python.org/3/library/venv.html

(continued from previous page)

sudo ln -s /usr/share/java/antlr4/antlr4-runtime.jar /usr/share/java/antlr4-
→˓runtime.jar
sudo ln -s /usr/share/java/treelayout/org.abego.treelayout.core.jar /usr/share/
→˓java/treelayout.jar
pip install ".[topwrap-parse]"

1.2 Example usage

This section demonstrates the basic usage of Topwrap to generate IP wrappers and a top module.

1. Create IP core description file for every IP Core you want to use or let topwrap parse handle
this for you. This file describes the ports, parameters and interfaces of an IP core.

As an example, Verilog module such as:

module ibuf (
input wire clk,
input wire rst,
input wire a,
output reg z

);
// ...

endmodule

Needs this corresponding description:

signals:
in:
- clk
- rst
- a

out:
- z

2. Create a design description file where you can specify all instances of IP cores and connec-
tions between them (project.yaml in this example)

• Create instances of IP cores:

ips:
vexriscv_instance:
file: ipcores/gen_VexRiscv.yaml
module: VexRiscv

wb_ram_data_instance:
file: ipcores/gen_mem.yaml
module: mem

wb_ram_instr_instance:
file: ipcores/gen_mem.yaml
module: mem

Antmicro 2

file and module are mandatory fields providing the IP description file and the name of the HDL
module as it appears in the source.

• (Optional) Set parameters for IP core instances:

parameters:
wb_ram_data_instance:

depth: 0x1000
memfile: "top_sram.init"

wb_ram_instr_instance:
depth: 0xA000
memfile: "bios.init"

• Connect desired ports of the IP cores:

ports:
wb_ram_data_instance:
clk: [some_other_ip, clk_out]
rst: [reset_core, reset0]

wb_ram_instr_instance:
clk: [some_other_ip, clk_out]
rst: [reset_core, reset0]

vexriscv_instance:
softwareInterrupt: [some_other_ip, sw_interrupt]
...

Connections only need to be written once, i.e. if A connects to B, then only a connection A: B
has to be specified (B: A is redundant).

• Connect desired interfaces of the IP cores:

interfaces:
vexriscv_instance:
iBusWishbone: [wb_ram_instr_instance, mem_bus]
dBusWishbone: [wb_ram_data_instance, mem_bus]

• Specify external ports or interfaces of the top module and connect them with chosen IP
cores’ ports or interfaces:

ports:
vexriscv_instance:
timerInterrupt: ext_timer_interrupt

...

external:
ports:

out:
- ext_timer_interrupt

interfaces:
...

3. Create a Core file template for FuseSoC, or use a default one bundled with Topwrap.

Antmicro 3

You may want to modify the file to add dependencies, source files, or change the target board.
The file should be named core.yaml.j2. You can find an example template in examples/hdmi
directory of the project. If you don’t create any template a default template bundled with
Topwrap will be used (stored in templates directory).

4. Place any additional source files in a directory (sources in this example).

5. Run Topwrap:

python -m topwrap build --design project.yaml --sources sources

1.2.1 Example PWM design

There’s an example setup in examples/pwm.

In order to generate the top module, run:

make generate

In order to generate bitstream, add Vivado to your path and run:

make

The FPGA design utilizes an AXI-mapped PWM IP Core. You can access its registers starting
from address 0x4000000 (that’s the base address of AXI_GP0 on ZYNQ). Each IP Core used in the
project is declared in ips section in project.yml file. ports section allows to connect individual
ports of IP Cores, and interfaces is used analogously for connecting whole interfaces. Finally,
you can specify which ports will be used as external I/O in external section.

To connect the I/O signals to specific FPGA pins, you need proper mappings in a constraints file.
See zynq.xdc used in the setup and modify it accordingly.

1.2.2 Example HDMI design

There’s an example setup stored in examples/hdmi.

You can generate bitstream for desired target:

• Snickerdoodle Black:

make snickerdoodle

• Zynq Video Board:

make zvb

If you wish to generate HDL sources without running Vivado, you can use:

Antmicro 4

make generate

You can find more information in README of the example setup.

Antmicro 5

CHAPTER

TWO

DESCRIPTION FILES

2.1 Design Description

To create a complete, fully synthesizable design, a proper design file is needed. It’s used to
specify interconnects, IP cores, set their parameters’ values, describe hierarchies for the project,
connect the IPs and hierarchies, and pick external ports (those which will be connected to
physical I/O).

You can see example design files in examples directory. The structure is as below:

ips:
specify relations between IPs names in the design yaml
and IP cores description yamls and modules
{ip_instance_name}:
file: {path_to_yaml_file_of_the_ip}
module: {name_of_the_HDL_module}

...

design:
name: {design_name} # optional name of the toplevel
hierarchies: # specify hierarchies designs
{hierarchy_name_1}:
design:

parameters:
...

ports: # ports connections internal to this hierarchy
...

interfaces: # interfaces connections internal to this hierarchy
...

{nested_hierarchy_name}:
...

external:
external ports and/or interfaces of this hierarchy; these can be
referenced in the upper-level `ports`, `interfaces` or `external`␣

→˓section
...

{hierarchy_name_2}:
...

parameters: # specify IPs parameter values to be overridden
(continues on next page)

6

(continued from previous page)

{ip_instance_name}:
{param_name} : {param_value}
...

ports:
specify incoming ports connections of an IP named `ip1_name`
{ip1_name}:
{port1_name} : [{ip2_name}, {port2_name}]
...

specify incoming ports connections of a hierarchy named `hier_name`
{hier_name}:
{port1_name} : [{ip_name}, {port2_name}]
...

specify external ports connections
{ip_instance_name}:
{port_name} : ext_port_name

...

interfaces:
specify incoming interfaces connections of `ip1_name` IP
{ip1_name}:
{iface1_name} : [{ip2_name}, {iface2_name}]
...

specify incoming interfaces connections of `hier_name` hierarchy
{hier_name}:
{iface1_name} : [{ip_name}, {iface2_name}]
...

specify external interfaces connections
{ip_instance_name}:
{iface_name} : ext_iface_name

...

interconnects:
see "Interconnect generation" page for a detailed description of the format
...

external: # specify names of external ports and interfaces of the top module
ports:

out:
- {ext_port_name}

inout:
- [{ip_name/hierarchy_name, port_name}]

interfaces:
in:
- {ext_iface_name}

In order for an IP to be present in the generated design, it must be specified in ports or
interfaces sections as a key. This means that even if it has no incoming connections from
any other IP or hierarchy, the ports or interfaces sections must contain ip_name: {} entry.

Antmicro 7

inout ports are handled differently than in and out ports. When any IP has an inout port or
when a hierarchy has an inout port specified in its external.ports.inout section, it must be
included in external.ports.inout section of the parent design by specifying the name of the
IP/hierarchy and port name that contains it. Name of the external port will be identical to the
one in the IP core. In case of duplicate names a suffix $n is added (where n is a natural number)
to the name of the second and subsequent duplicate names. inout ports cannot be connected
to each other.

The design description yaml format allows creating hierarchical designs. In order to create a
hierarchy, it suffices to add its name as a key in the design section and describe the hierarchy
design “recursively” by using the same keys and values (ports, parameters etc.) as in the top-
level design (see above). Hierarchies can be nested recursively, which means that you can create
a hierarchy inside another one.

Note that IPs and hierarchies names cannot be duplicated on the same hierarchy level. For
example, the design section cannot contain two identical keys, but it’s correct to have ip_name
key in this section and ip_name in the design section of some hierarchy.

2.2 IP description files

Every IP wrapped by Topwrap needs a description file in YAML format.

The ports of an IP should be placed in global signals node, followed by the direction of in, out
or inout. Here’s an example description of ports of Clock Crossing IP:

file: clock_crossing.yaml
signals:

in:
- clkA
- A
- clkB

out:
- B

The previous example is enough to make use of any IP. However, in order to benefit from con-
necting whole interfaces at once, ports must belong to a named interface like in this example:

#file: axis_width_converter.yaml
interfaces:

s_axis:
type: AXIStream
mode: slave
signals:

in:
TDATA: [s_axis_tdata, 63, 0]
TKEEP: [s_axis_tkeep, 7, 0]
TVALID: s_axis_tvalid
TLAST: s_axis_tlast
TID: [s_axis_tid, 7, 0]
TDEST: [s_axis_tdest, 7, 0]
TUSER: s_axis_tuser

(continues on next page)

Antmicro 8

(continued from previous page)

out:
TREADY: s_axis_tready

m_axis:
type: AXIStream
mode: master
signals:

in:
TREADY: m_axis_tready

out:
TDATA: [m_axis_tdata, 31, 0]
TKEEP: [m_axis_tkeep, 3, 0]
TVALID: m_axis_tvalid
TLAST: m_axis_tlast
TID: [m_axis_tid, 7, 0]
TDEST: [m_axis_tdest, 7, 0]
TUSER: m_axis_tuser

signals: # These ports don't belong to any interface
in:

- clk
- rst

Names s_axis and m_axis will be used to group the selected ports. Each signal in an interface
has a name which must match with the signal it’s supposed to be connected to, for example
TDATA: port_name will be connected to TDATA: other_port_name.

Note that you don’t have to write IP core description yamls by hand. You can use Topwrap’s
parse command (see Generating IP core description YAMLs) in order to generate yamls from HDL
source files and then adjust the yaml to your needs.

2.2.1 Port widths

The width of every port defaults to 1. You can specify the width using this notation:

interfaces:
s_axis:

type: AXIStream
mode: slave
signals:

in:
TDATA: [s_axis_tdata, 63, 0] # 64 bits
...
TVALID: s_axis_tvalid # defaults to 1 bit

signals:
in:

- [gpio_io_i, 31, 0] # 32 bits

Antmicro 9

2.2.2 Parameterization

Port widths don’t have to be hardcoded - you can use parameters to describe an IP core in a
generic way. Values specified in IP core yamls can be overridden in a design description file (see
Design Description).

parameters:
DATA_WIDTH: 8
KEEP_WIDTH: (DATA_WIDTH+7)/8
ID_WIDTH: 8
DEST_WIDTH: 8
USER_WIDTH: 1

interfaces:
s_axis:

type: AXI4Stream
mode: slave
signals:

in:
TDATA: [s_axis_tdata, DATA_WIDTH-1, 0]
TKEEP: [s_axis_tkeep, KEEP_WIDTH-1, 0]
...
TID: [s_axis_tid, ID_WIDTH-1, 0]
TDEST: [s_axis_tdest, DEST_WIDTH-1, 0]
TUSER: [s_axis_tuser, USER_WIDTH-1, 0]

Parameters values can be integers or math expressions, which are evaluated using numexpr.
evaluate().

2.2.3 Port slicing

You can also slice a port, to use some bits of the port as a signal that belongs to an interface.
The example below means:

Port m_axi_bid of the IP core is 36 bits wide. Use bits 23..12 as the BID signal of
AXI master named m_axi_1

m_axi_1:
type: AXI
mode: master
signals:

in:
BID: [m_axi_bid, 35, 0, 23, 12]

Antmicro 10

2.3 Interface Description files

Topwrap can use predefined interfaces described in YAML files that come packaged with the
tool. Currently supported interfaces are AXI4, AXI3, AXI Stream, AXI Lite and Wishbone.

You can see an example file below:

name: AXI4Stream
port_prefix: AXIS
signals:

convention assumes the AXI Stream transmitter (master) perspective
required:

out:
TVALID: tvalid
TDATA: tdata
TLAST: tlast

in:
TREADY: tready

optional:
out:

TID: tid
TDEST: tdest
TKEEP: tkeep
TSTRB: tstrb
TUSER: tuser
TWAKEUP: twakeup

The name of an interface has to be unique. We also specify a prefix which will be used as a
shortened identifier. Signals are either required or optional. Their direction is described from
the the perspective of master (i.e. directionality of signals in the slave is flipped) - note that
clock and reset are not included as these are usually inputs in both master and slave so they’re
not supported in interface specification. These distinctions are used when an option to check if
all mandatory signals are present is enabled and when parsing an IP core with topwrap parse
(not all required signals must necessarily be present but it’s taken into account). Every signal is
a key-value pair, where the key is a generic signal name (usually from interface specification)
and value is a regex that is used to pair the generic name with a concrete signal name in the
RTL source when using topwrap parse. This pairing is performed on signal names that are
transformed to lowercase and have a common prefix of an interface they belong to removed.
If a regexp occurs in such transformed signal name anywhere, that name is paired with the
generic name. Since this occurs on names that have all characters in lowercase, regex must be
written in lowercase as well.

Antmicro 11

CHAPTER

THREE

INTERCONNECT GENERATION

Generating interconnects is an experimental feature of topwrap. With a specification of which
interfaces are masters or slaves and their address ranges, topwrap is able to automatically
generate an interconnect conforming to this description. Currently supported interconnect types
are:

• Wishbone round-robin

3.1 Format

The format for describing interconnects is specified below. interconnects key must be a direct
descendant of the design key in the design description.

interconnects:
{interconnect1_name}:
specify clock and reset to drive the interconnect with
clock: [{ip_name, clk_port_name}]
reset: [{ip_name, rst_port_name}]
alternatively you can specify a connection to an external interface:
clock: ext_clk_port_name
reset: ext_rst_port_name

specify interconnect type
type: {interconnect_type}

specify interconnect parameters - interconnect-type-dependent (see
→˓"Interconnect params" section):

params:
{param_name1}: param_value1
...

specify masters and their interfaces connected to the bus
masters:
{master1_name}:

- {master1_iface1_name}
...

...

specify slaves, their interfaces connected to the bus and their bus␣
(continues on next page)

12

(continued from previous page)

→˓parameters
slaves:
{slave1_name}:
{slave1_interface1_name}:
requests in address range [address, address+size) will be routed to this␣

→˓interface
address: {start_address}
size: {range_size}
...

...

3.2 Interconnect params

Different interconnect types may provide different configuration options. This section lists pa-
rameter names for available interconnects for use in the params section of interconnect specifi-
cation.

3.2.1 Wishbone round-robin

Corresponds to type: wishbone_roundrobin

• addr_width - bit width of the address line (addresses access data_width-sized chunks)

• data_width - bit width of the data line

• granularity - access granularity - smallest unit of data transfer that the interconnect is
capable of transferring. Must be one of: 8, 16, 32, 64

• features - optional, list of optional wishbone signals, can contain: err, rty, stall, lock,
cti, bte

3.3 Limitations

Known limitations currently are:

• only word-sized addressing is supported (in other words - consecutive addresses access
word-sized chunks of data)

• crossing clock domains is not supported

• down-converting (initiating multiple transactions on a narrow bus per one transaction on
a wider bus) is not supported

• up-converting is not supported

Antmicro 13

CHAPTER

FOUR

COMMAND-LINE INTERFACE

4.1 Building design

To run Topwrap, use:

python -m topwrap build --design project.yml

Where project.yml should be your file with description of the top module.

You can specify a directory to be scanned for additional sources:

python -m topwrap build --sources src --design project.yml

To implement the design for a specific FPGA chip, provide the part name:

python -m topwrap build --sources src --design project.yml --part 'xc7z020clg400-3
→˓'

4.2 Connect Topwrap to Pipeline Manager

If you want to use Pipeline Manager as a UI for creating block design, you need to:

1. Build and run Pipeline Manager server application.

python -m topwrap kpm_build_server
python -m topwrap kpm_run_server

2. Run Topwrap’s client application, that will connect to a running Pipeline Manager server
app.

python -m topwrap kpm_client [-h ip_addr] [-p port] FILES

Topwrap will then try to connect to the server running on ip_addr:port and send a specification
generated from FILES, which should be IP core description yamls.

If -h or -p options are not specified, ip address 127.0.0.1 and port 9000 will be chosen by
default.

14

4.3 Generating IP core description YAMLs

You can also use Topwrap to generate ip core description yamls from HDL sources, that can be
later used in your project.yml:

python -m topwrap parse HDL_FILES

In HDL source files, ports that belong to the same interface (e.g. wishbone or AXI), have
often a common prefix, which corresponds to the interface name. If such naming convention
is followed in the HDL sources, Topwrap can also divide ports into user-specified interfaces, or
automatically deduce interfaces names when generating yaml file:

python -m topwrap parse --iface wishbone --iface s_axi HDL_FILES

python -m topwrap parse --iface-deduce HDL_FILES

To get help, use:

python -m topwrap [build|kpm_client|parse] --help

Antmicro 15

CHAPTER

FIVE

KENNING PIPELINE MANAGER

Topwrap can make use of Kenning Pipeline Manager to visualize the process of creating block
design.

5.1 Run Topwrap with Pipeline Manager

1. Build and run Pipeline Manager server

In order to start creating block design in Pipeline Manager, you need to first build and
run a server application - here is a brief instruction on how to achieve this (the process of
building and installation of Pipeline Manager is described in detail in its documentation):

python -m topwrap kpm_build_server
python -m topwrap kpm_run_server

After executing the above-mentioned commands, the Pipeline Manager server is waiting
for an external application (i.e. Topwrap) to connect on 127.0.0.1:9000 and you can
connect to the web GUI frontend in your browser on http://127.0.0.1:5000.

2. Establish connection with Topwrap

Once the Pipeline Manager server is running, you can now launch Topwrap’s client appli-
cation in order to connect to the server. You need to specify:

• IP address (127.0.0.1 is default)

• listening port (9000 is default)

• yamls describing IP cores, that will be used in the block design

An example command, that runs Topwrap’s client, may look like this:

python -m topwrap kpm_client -h 127.0.0.1 -p 9000 \
topwrap/ips/axi/axi_axil_adapter.yaml \
examples/pwm/ipcores/{litex_pwm.yml,ps7.yaml}

3. Create block design in Pipeline Manager

Upon successful connection to a Pipeline Manager server, Topwrap will generate and send
to the server a specification describing the structure of previously selected IP cores. After
that, you are free to create a custom block design by means of:

• adding IP core instances to the block design. Each Pipeline Manager’s node has
delete and rename options, which make it possible to remove the selected node and

16

https://github.com/antmicro/kenning-pipeline-manager
https://antmicro.github.io/kenning-pipeline-manager/project-readme.html#building-and-running

change its name respectively. This means that you can create multiple instances of
the same IP core.

• adjusting IP cores’ parameters values. Each node may have input boxes in which you
can enter parameters’ values (default parameter values are added while adding an
IP core to the block design):

• connecting IP cores’ ports and interfaces. Only connections between ports or in-
terfaces of matching types are allowed. This is automatically checked by Pipeline
Manager, as the types of nodes’ ports and interfaces are contained in the loaded
specification, so Pipeline Manager will prevent you from connecting non-matching
interfaces (e.g. AXI4 with AXI4Lite or a port with an interface). A green line will be
displayed if a connection is possible to create, or a red line elsewhere:

Antmicro 17

• specifying external ports or interfaces in the top module. This can be done by adding
External Input, External Output or External Inout metanodes and creating con-
nections between them and chosen ports or interfaces. Note that you should adjust
the name of the external port or interface in a textbox inside selected metanode. In
the example below, output port pwm of litex_pwm_top IP core will be made external
in the generated top module and the external port name will be set to ext_pwm:

Note, that you don’t always have to create a new block design by hand - you can use
a design import feature to load an existing block design from a description in Topwrap’s
yaml format.

An example block design in Pipeline Manager for the PWM project may look like this:

Antmicro 18

5.2 Pipeline Manager features

While creating a custom block design, you can make use of the following Pipeline Manager’s
features:

• export (save) design to a file

• import (load) design from a file

• validate design

• build design

5.2.1 Export design to yaml description file

Created block design can be saved to a design description file in yaml format, using Pipeline Man-
ager’s Save file option. Target location on the filesystem can then be browsed in a filesystem
dialog window.

5.2.2 Import design from yaml description file

Topwrap also supports conversion in the opposite way - block design in Pipeline Manager can
be generated from a yaml design description file using Load file feature.

Antmicro 19

5.2.3 Design validation

Pipeline Manager is capable of performing some basic checks at runtime such as interface type
checking while creating a connection. However you can also run more complex tests by using
Pipeline Manager’s Validate option. Topwrap will then respond with a validity confirmation or
error messages. The rules you need to follow in order to keep your block design valid are:

• multiple IP cores with the same name are not allowed (except from external metanodes).

• parameters values can be integers of different bases (e.g. 0x28, 40 or 0b101000) or
arithmetic expressions, that are later evaluated using numexpr.evaluate() function (e.g.
(AXI_DATA_WIDTH+1)/4 is a valid parameter value assuming that a parameter named
AXI_DATA_WIDTH exists in the same IP core). You can also write a parameter value in
a Verilog format (e.g. 8'b00011111 or 8'h1F) - in such case it will be interpreted as a
fixed-width bit vector.

• a single port or interface cannot be external and connected to another IP core at the same
time.

• connections between two external metanodes are not allowed.

• all the created external output or inout ports must have unique names. Only multiple
input ports of IP cores can be driven be the same external signal.

Topwrap can also generate warnings if:

• some ports or interfaces remain unconnected.

• multiple ports are connected to an External Input metanode with an empty External
Name property.

• inout ports of two modules are connected together (all inout ports are required to be
directly connected to External Inout metanodes)

If a block design validation returns a warning, it means that the block design can be successfully
built, but it is recommended to follow the suggestion and resolve a particular issue.

5.2.4 Building design

Once the design has been created and tested for validity, you can build design using Run button.
If the design does not contain any errors, this will result in creating a top module in a directory
where topwrap kpm_client was ran, similarly when using Topwrap’s topwrap build command.

Antmicro 20

https://numexpr.readthedocs.io/en/latest/api.html#numexpr.evaluate

CHAPTER

SIX

FUSESOC

Topwrap uses FuseSoC to automate project generation and build process. When topwrap build
is invoked it generates a FuseSoC core file along with the top-level wrapper.

A template for the core file is bundled with Topwrap (templates/core.yaml.j2). You may need
to edit the file to change the backend tool, set additional Hooks and change the FPGA part
name or other parameters. By default, topwrap.fuse_helper.FuseSocBuilder searches for the
template file in the directory you work in, so you should first copy the template into the project’s
location.

After generating the core file you can run FuseSoC to generate bitstream and program FPGA:

fusesoc --cores-root build run project_1

This requires having the suitable backend tool in your PATH (Vivado, for example).

21

CHAPTER

SEVEN

SETUP

It is required for developers to keep code style and recommended to frequently run tests. In
order to setup the developer’s environment install optional dependency groups topwrap-parse,
tests and lint specified in pyproject.toml which include nox and pre-commit:

python -m venv venv
source venv/bin/activate
pip install -e ".[topwrap-parse,tests,lint]"

The -e option is for installing in editable mode - meaning changes in the code under develop-
ment will be immediately visible when using the package.

22

CHAPTER

EIGHT

CODE STYLE

Automatic formatting and linting of the code can be performed with either nox or pre-commit.

8.1 Lint with nox

After successful setup, nox sessions can be executed to perform lint checks:

nox -s lint

This runs isort, black, flake8 and codespell and fixes almost all formatting and linting prob-
lems automatically, but a small minority has to be fixed by hand (e.g. unused imports).

Note: To reuse current virtual environment and avoid long installation time use -R option:

nox -R -s lint

Note: pre-commit can also be run from nox:

nox -s pre_commit

8.2 Lint with pre-commit

Alternatively, you can use pre-commit to perform the same job. Pre-commit hooks need to be
installed:

pre-commit install

Now, each use of git commit in the shell will trigger actions defined in the .pre-commit-config.
yaml file. Pre-commit can be easily disabled with a similar command:

pre-commit uninstall

If you wish to run pre-commit asynchronously, then use:

23

pre-commit run --all-files

Note: pre-commit by default also runs nox with isort,flake8, black and codespell sessions

8.3 Tools

Tools used in project for maintaining code style:

• Nox is a tool, which simplifies management of Python testing. Visit nox website

• Pre-commit is a framework for managing and maintaining multi-language pre-commit
hooks. Visit pre-commit website

• Black is a code formatter. Visit black website

• Flake8 is a tool capable of linting, styling fixes and complexity analysis. Visit flake8
website

• Isort is a Python utility to sort imports alphabetically. Visit isort website

• Codespell is a Python tool to fix common spelling mistakes in text files Visit codespell
repository

Antmicro 24

https://nox.thea.codes/en/stable/
https://pre-commit.com/
https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://pycqa.github.io/isort/
https://github.com/codespell-project/codespell
https://github.com/codespell-project/codespell

CHAPTER

NINE

TESTS

Topwrap functionality is validated with tests, leveraging the pytest library.

9.1 Test execution

Tests are located in the tests directory. All tests can be run with nox by specifying the tests
session:

nox -s tests

This only runs tests on python interpreter versions that are available locally. There is also a
session tests_in_env that will automatically install all required python versions, provided you
have pyenv installed:

nox -s tests_in_env

Note: To reuse existing virtual environment and avoid long installation time use -R option:

nox -R -s tests_in_env

To force a specific Python version and avoid running tests for all listed versions, use -p VERSION
option:

nox -p 3.10 -s tests_in_env

Tests can also be launched without nox by executing:

python -m pytest

Warning: When running tests by invoking pytest directly, tests are ran only on the locally
selected python interpreter. As CI runs them on all supported Python versions it’s recom-
mended to run tests with nox on all versions before pushing.

Ignoring particular test can be done with --ignore=test_path, e.g:

25

https://github.com/pyenv/pyenv

python -m pytest --ignore=tests/tests_build/test_interconnect.py

Sometimes it’s useful to see what’s being printed by the test for debugging purposes. Pytest cap-
tures all output from the test and displays it when all tests finish. To see the output immediately,
pass -s option to pytest:

python -m pytest -s

9.2 Test coverage

Test coverage is automatically generated when running tests with nox. When invoking pytest
directly it can be generated with --cov=topwrap option. This will generate a summary of cov-
erage displayed in CLI.

python -m pytest --cov=topwrap

Additionally, the summary can be generated in HTML with --cov=topwrap --cov-report html,
where lines that were not covered by tests can be browsed:

python -m pytest --cov=topwrap --cov-report html

Generated report is available at htmlcov/index.html

Antmicro 26

CHAPTER

TEN

WRAPPER

Wrapper is an abstraction over entities that have ports - examples include IP cores written in Ver-
ilog/VHDL, cores written in Amaranth and hierarchical collections for these that expose some
external ports. Subclasses of this class have to supply implementation of property get_ports()
that has to return a list of all ports of the entity.

class Wrapper(*args, src_loc_at=0, **kwargs)
Base class for modules that want to connect to each other.

Derived classes must implement get_ports method that returns a list of WrapperPort’s -
external ports of a class that can be used as endpoints for connections.

__init__(name: str)

get_port_by_name(name: str) → WrapperPort
Given port’s name, return the port as WrapperPort object.

Raises
ValueError – If such port doesn’t exist.

property get_ports : list[WrapperPort]
Return a list of external ports.

get_ports_of_interface(iface_name: str) → List[WrapperPort]
Return a list of ports of specific interface.

Raises
ValueError – if such interface doesn’t exist.

27

CHAPTER

ELEVEN

IPWRAPPER CLASS

IPWrapper provides an abstraction over a raw HDL source file. Instances of this class can be
created from a loaded YAML IP-core description.

Under the hood it will create Amaranth’s Instance object during elaboration, referencing a
particular HDL module and it will appear as a module instantiation in the generated toplevel.
Ports and interfaces (lists of ports) can be retrieved via standard methods of Wrapper. These are
instances of WrapperPorts.

class IPWrapper(*args, src_loc_at=0, **kwargs)
This class instantiates an IP in a wrapper to use its individual ports or grouped ports as
interfaces.

__init__(yamlfile: str, base_path: str, ip_name: str, instance_name: str, params={})

Parameters

yamlfile: str
name of a file describing ports and interfaces of the IP

base_path: str
path of the project for searching IP description

28

ip_name: str
name of the module to wrap

instance_name: str
name of this instance

params={}
optional, HDL parameters of this instance

get_ports() → List[WrapperPort]
Return a list of all ports that belong to this IP.

Antmicro 29

CHAPTER

TWELVE

IPCONNECT CLASS

IPConnect provides means of connecting ports and interfaces of objects that are subclasses of
Wrapper. Since IPConnect is a subclass of Wrapper itself, this means that it also has IO - ports
and interfaces, and that multiple IPConnects can have their ports and interfaces connected to
each other (or other objects that subclass Wrapper).

Instances of Wrapper objects can be added to an IPConnect using add_component() method:

create a wrapper for an IP
dma = IPWrapper('DMATop.yaml', ip_name='DMATop', instance_name='DMATop0')
ipc = IPConnect()
ipc.add_component("dma", dma)

Connections between cores can then be made with connect_ports() and
connect_interfaces() based on names of the components and names of ports/interfaces:

30

ipc.connect_ports("comp1_port_name", "comp1_name", "comp2_port_name", "comp2_name
→˓")
ipc.connect_interfaces("comp1_interface_name", "comp1_name", "comp2_interface_name
→˓", "comp2_name")

Setting ports or interfaces of a module added to IPConnect as external with _set_port() and
_set_interface() and allows these ports/interfaces to be connected to other Wrapper instances.

ipc._set_port("comp1_name", "comp1_port_name", "external_port_name")
ipc._set_interface("comp1_name", "comp1_interface_name", "external_interface_name
→˓")

This is done automatically in make_connections() method when the design is built based on
the data from the YAML design description.

class IPConnect(*args, src_loc_at=0, **kwargs)
Connector for multiple IPs, capable of connecting their interfaces as well as individual
ports.

__init__(name: str = 'ip_connector')

_connect_external_ports(internal: WrapperPort, external: WrapperPort)

Makes a pass-through connection - port of an internal module in IPConnect is con-
nected to an external IPConnect port.

Parameters

internal: WrapperPort
port of an internal module of IPConnect

external: WrapperPort
external IPConnect port

_connect_internal_ports(port1: WrapperPort, port2: WrapperPort)

Connects two ports with matching directionality. Disallowed configurations are: -
input to input - output to output - inout to inout All other configurations are allowed.

Parameters

port1: WrapperPort
1st port to connect

port2: WrapperPort
2nd port to connect

_connect_to_external_port(internal_port: str, internal_comp: str, external_port: str,
external: dict) → None

Connect internal port of a component to an external port

Parameters

internal_port: str
internal port name in internal_component to connect to external_port

internal_comp: str
internal component name

Antmicro 31

external_port: str
external port name

external: dict
dictionary in the form of {“in”: list, “out”: list, “inout”: list} containing
port names specified as external in each of the three categories. All
keys are optional and lack of a category implies an empty list

_set_interface(comp_name: str, iface_name: str, external_iface_name: str) → None

Set interface specified by name as an external interface

Parameters

comp_name: str
name of the component - hierarchy or IP core

iface_name: str
interface name in the component

external_iface_name: str
external name of the interface specified in “external” section

Raises
ValueError – if such interface doesn’t exist

_set_port(comp_name: str, port_name: str, external_name: str) → None

Set port specified by name as an external port

Parameters

comp_name: str
name of the component - hierarchy or IP core

port_name: str
port name in the component

external_name: str
external name of the port specified in “external” section

Raises
ValueError – if such port doesn’t exist

add_component(name: str, component: Wrapper) → None

Add a new component to this IPConnect, allowing to make connections with it

Parameters

name: str
name of the component

component: Wrapper
Wrapper object

connect_interfaces(iface1: str, comp1_name: str, iface2: str, comp2_name: str) →
None

Make connections between all matching ports of the interfaces

Parameters

Antmicro 32

iface1: str
name of the 1st interface

comp1_name: str
name of the 1st IP

iface2: str
name of the 2nd interface

comp2_name: str
name of the 2nd IP

Raises
ValueError – if any of the IPs doesn’t exist

connect_ports(port1_name: str, comp1_name: str, port2_name: str, comp2_name: str)
→ None

Connect ports of IPs previously added to this Connector

Parameters

port1_name: str
name of the port of the 1st IP

comp1_name: str
name of the 1st IP

port2_name: str
name of the port of the 2nd IP

comp2_name: str
name of the 2nd IP

Raises
ValueError – if such IP doesn’t exist

get_ports() → list

Return a list of external ports of this module

make_connections(ports: dict, interfaces: dict, external: dict) → None

Use names of port and names of ips to make connections

Parameters

ports: dict
“ports” section in the YAML design specification

interfaces: dict
“interfaces” section in the YAML design specification

external: dict
“external” section in the YAML design specification

make_interconnect_connections(interconnects: dict, external: dict)
Connect slaves and masters to their respective interfaces in the interconnect

Parameters

interconnects: dict
“interconnects” section in the YAML design specification

Antmicro 33

external: dict
“external” section in the YAML design specification

set_constant(comp_name: str, comp_port: str, target: int) → None

Set a constant value on a port of an IP

Parameters

comp_name: str
name of the IP or hierarchy

comp_port: str
name of the port of the IP or hierarchy

target: int
int value to be assigned

Raises
ValueError – if such IP doesn’t exist

validate_inout_connections(inouts)

Checks that all inout ports of any IP or hierarchy in the design are explicitly listed in
the ‘external’ section.

Parameters

inouts
external.ports.inout section of the design description YAML

Antmicro 34

CHAPTER

THIRTEEN

ELABORATABLEWRAPPER CLASS

ElaboratableWrapper encapsulates an Amaranth’s Elaboratable and exposes an interface com-
patible with other wrappers which allows making connections with them. Supplied elaboratable
must contain a signature property and a conforming interface as specified by Amaranth docs.
Ports’ directionality, their names and widths are inferred from it.

class ElaboratableWrapper(*args, src_loc_at=0, **kwargs)
Allows connecting an Amaranth’s Elaboratable with other classes derived from Wrapper.

__init__(name: str, elaboratable: Elaboratable)

Parameters

name: str
name of this wrapper

elaboratable: Elaboratable
Amaranth’s Elaboratable object to wrap

get_ports() → List[WrapperPort]
Return a list of external ports.

get_ports_hier() → Mapping[str, Signal | Mapping[str, Signal | SignalMapping]]

Maps elaboratable’s Signature to a nested dictionary of WrapperPorts. See
_gather_signature_ports for more details.

35

https://amaranth-lang.org/rfcs/0002-interfaces.html

CHAPTER

FOURTEEN

WRAPPER PORT

Class WrapperPort is an extension to Amaranth’s Signal. It wraps a port, adding a new name
and optionally slicing the signal. It adds these attributes:

WrapperPort.internal_name # name of the port in internal source to be wrapped
WrapperPort.direction # DIR_FANIN, DIR_FANOUT or DIR_NONE
WrapperPort.interface_name # name of the group of ports (interface)
WrapperPort.bounds # range of bits that belong to the port

and range which is sliced from the port

See Port slicing to know more about bounds.

This is used in IPWrapper class implementation and there should be no need to use WrapperPort
individually.

Warning: WrapperPort is scheduled to be replaced in favor of plain Amaranth’s Signal so
it should not be used in any new functionality.

class WrapperPort(shape=None, src_loc_at=0, **kwargs)

__init__(shape=None, src_loc_at=0, *, bounds: List[int], name: str, internal_name: str,
interface_name: str | None = None, direction: PortDirection)

Wraps a port, adding a new name and optionally slicing the signal

Parameters

bounds: List[int]
4-element list where: [0:1] - upper and lower bounds of reference
signal, [2:3] - upper and lower bounds of internal port, which are
either the same as reference port, or a slice of the reference port

name: str
a new name for the signal

internal_name: str
name of the port to be wrapped/sliced

interface_name: str | None = None
name of the interface the port belongs to

direction: PortDirection
one of PortDirection, e.g. DIR_OUT

36

static like(other, **kwargs)

Creates a WrapperPort object with identical parameters as other object

Parameters

other
object to clone data from

**kwargs
optional constructor parameters to override

Antmicro 37

CHAPTER

FIFTEEN

FUSESOCBUILDER

Topwrap has support for generating FuseSoC’s core files with FuseSocBuilder. Such core file
contains information about source files and synthesis tools. Generation is based on a jinja
template that defaults to topwrap/templates/core.yaml.j2 but can be overridden.

Here’s an example of how to generate a simple project:

from topwrap.fuse_helper import FuseSocBuilder
fuse = FuseSocBuilder()

add source of the IPs used in the project
fuse.add_source('DMATop.v', 'verilogSource')

add source of the top file
fuse.add_source('top.v', 'verilogSource')

specify the names of the Core file and the directory where sources are stored
generate the project
fuse.build('build/top.core', 'sources')

Warning: Default template in topwrap/templates/core.yaml.j2 does not make use of
resources added with add_dependency() or add_external_ip(), i.e. they won’t be present
in the generated core file.

class FuseSocBuilder(part)
Use this class to generate a FuseSoC .core file

__init__(part)

add_dependency(dependency: str)
Adds a dependency to the list of dependencies in the core file

add_external_ip(vlnv: str, name: str)
Store information about IP Cores from Vivado library to generate hooks that will add
the IPs in a TCL script.

add_source(filename, type)
Adds an HDL source to the list of sources in the core file

38

add_sources_dir(sources_dir)
Given a name of a directory, add all files found inside it. Recognize VHDL, Verilog,
and XDC files.

build(core_filename, sources_dir=None, template_name=None)
Generate the final create .core file

Parameters

sources_dir=None
additional directory with source files to add

template_name=None
name of jinja2 template to be used, either in working directory, or
bundled with the package. defaults to a bundled template

Antmicro 39

CHAPTER

SIXTEEN

INTERFACE DEFINITION

Topwrap uses interface definition files for its parsing functionality. These are used to match a
given set of signals that appear in the HDL source with signals in the interface definition.

InterfaceDefinition is defined as a marshmallow_dataclass.dataclass - this enables loading
YAML structure into Python objects and performs validation (that the YAML has the correct
format) and typechecking (that the loaded values are of correct types).

class InterfaceDefinition(name: str, port_prefix: str, signals:
~typing.List[~topwrap.interface.IfacePortSpecification] =
<factory>)

Interface described in YAML interface definition file

__init__(name: str, port_prefix: str, signals:
~typing.List[~topwrap.interface.IfacePortSpecification] = <factory>)

Schema

alias of InterfaceDefinition

get_interface_by_name(name: str) → InterfaceDefinition | None

Retrieve a predefined interface definition by its name

Returns
InterfaceDefinition object, or None if there’s no such interface

check_interface_compliance(iface_def: InterfaceDefinition, signals: dict) → bool

Check if list of signal names matches the names in interface definition

40

CHAPTER

SEVENTEEN

CONFIG

A Config object stores configuration values. A global topwrap.config.config object is used
throughout the codebase to access topwrap’s configuration. This is created by ConfigManager
that reads config files defined in topwrap.config.ConfigManager.DEFAULT_SEARCH_PATHS, with
files most local to the project taking precedence.

class Config(force_interface_compliance: bool | None = False, repositories:
~typing.List[~topwrap.config.RepositoryEntry] | None = <factory>)

Global topwrap configuration

__init__(force_interface_compliance: bool | None = False, repositories:
~typing.List[~topwrap.config.RepositoryEntry] | None = <factory>)

Schema

alias of Config

class ConfigManager(search_paths: List[PathLike] | None = None)
Manager used to load topwrap’s configuration from files.

The configuration files are loaded in a specific order, which also determines the priority of
settings that are defined differently in the files. The list of default search paths is defined
in the DEFAULT_SEARCH_PATH class variable. Configuration files that are specified earlier
in the list have higher priority and can overwrite the settings from the files that follow. The
default list of search paths can be changed by passing a different list to the ConfigManager
constructor.

__init__(search_paths: List[PathLike] | None = None)

41

CHAPTER

EIGHTEEN

DEDUCING INTERFACES

This section describes how inferring interfaces works when using topwrap parse with
--iface-deduce, --iface or --use-yosys options.

The problem can be described as follows: given a set of signals, infer what interfaces are present
in this set and assign signals to appropriate interfaces. Interface names and types (AXI4, AXI
Stream, Wishbone, etc.) are, in the general case, not given in advance. Algorithm implemented
in topwrap works roughly as follows:

1. Split the given signal set into disjoint subsets of signals based on common prefixes in their
names

2. For a given subset, try to pair each signal name (as it appears in the RTL) with the name
of an interface signal (as it is defined in the specification of a particular interface). This
pairing is called “a matching”. Matching with signals from all defined interfaces is tried.

3. For a given subset and matched interface, infer the interface direction (master/slave)
based on the direction of some signal in this set.

4. Compute score for each matching, e.g. if signal names contain cyc, stb and ack (and pos-
sibly more) it’s likely that this set is a Wishbone interface. Among all interfaces, interface
that has the highest matching score is selected.

18.1 Step 1. - splitting ports into subsets

First, all ports of a module are grouped into disjoint subsets. Execution of this step differs based
on the options supplied to topwrap parse:

• with --iface the user supplies topwrap with interface names - ports with names starting
with a given interface name will be put in the same subset.

• with --use-yosys grouping is done by parsing the RTL source with yosys, where ports
have attributes in the form of (* interface="interface_name" *). Ports with the same
interface_name will be put in the same subset.

• with --iface-deduce grouping is done by computing longest common prefixes among all
ports. This is done with the help of a trie and only allows prefixes that would split the port
name on an underscore (e.g. in under_score valid prefixes are an empty string, under and
under_score) or a camel-case word boundary (e.g. in wordBoundary valid prefixes are an
empty string, word and wordBoundary). As with user-supplied prefixes, ports with names
starting with a given prefix will be put in the same subset.

42

https://en.wikipedia.org/wiki/Trie

18.2 Step 2. - matching ports with interface signal names

Given a subset of ports from a previous step, this step tries to match a regexp from an interface
definition YAML for a given interface signal to one of the port names and returns a collection
of pairs: RTL port + interface port. For example, when matching against AXI4, a port named
axi_a_arvalid should match to an interface port named ARVALID in the interface definition
YAML.

This operation is performed for all defined interfaces per a given subset of ports so the overall
result of this step is a collection of matchings. For most interfaces these matching will be poor
- e.g. axi_a_arvalid or other AXI4 signals won’t match to most Wishbone interface signals,
but an interface that a human would usually assign to a given set of signals will have the most
signals matched.

18.3 Step 3. - inferring interface direction

This step picks a representative RTL signal from a single signal matching from the previous
step and checks its direction against direction of the corresponding interface signal in interface
definition YAML - if it’s the same then it’s a master interface (since the convention in interface
description files is to describe signals from the master’s perspective), otherwise it’s a slave.

18.4 Step 4. - computing interface matching score

This step computes a score for each matching returned by step 2. This score is based on the
number of matched/unmatched optional/required signals in each matching.

Not matching some signals in a given group (from step 1.) is heavily penalized to encourage
selecting interface that “fits” a given group best. For example, AXI Lite is a subset of AXI4, so a
set of signals that should be assigned AXI4 interface could very well fit the description of AXI
Lite, but this mechanism discourages selecting such matching in favor of selecting the other.

Not matching some signals of a given interface (from interface description YAML) is also penal-
ized. Inverting the previous example, a set of signals that should be assigned AXI Lite interface
could very well fit the description of AXI4, but because it’s missing a few AXI4 signals so select-
ing this matching is discouraged in favor of selecting the other.

18.4.1 Good scoring function

A well-behaving scoring function should satisfy some properties to ensure that the best “fitting”
interface is selected. To describe these we introduce the following terminology:

• >/>=/== should be read as “must have a greater/greater or equal/equal score than”.

• Partial matching means matching where some rtl signals haven’t been matched to inter-
face signals, full matching means matching where all have been matched.

Current implementation when used with default config values satisfies these properties:

1. full matching with N+1 signals matched (same type) == full matching with N signals
matched (same type)

Antmicro 43

2. full matching with N signals matched (same type) > partial matching with N signals
matched (same type)

3. partial matching with N+1 signals matched (same type) > partial matching with N signals
matched (same type)

4. full matching with N+1 required, M+1 optional signals >= full matching with N+1
optional, M optional signals >= full matching with N required, M+1 optional signals >=
full matching with N required, M optional signals

Properties 2-4 generally ensure that interfaces with more signals matched are favored more
over those with less signals matched. Property 1. follows from the current implementation and
is not needed in all implementations.

Full details can be found in the implementation itself.

Antmicro 44

CHAPTER

NINETEEN

EXAMPLES

Note: Basic usage of examples is explained in the Getting started section.

Examples provided with this project should cover from very simple designs to complex fully syn-
thesizable cores. They should be sorted by increasing complexity and number of used features,
e.g:

• 101: minimal base design

• 102: introduce user to parameters

• 103: introduce user to slicing

• 104: introduce user to interfaces

• 105: etc.

Developers are encouraged to create/add new examples in the same spirit. Simple examples
are used to teach how to use this tool and demonstrate its features. Real-world use cases are
also welcome to prove that the implementation is mature enough to handle practical designs.

45

CHAPTER

TWENTY

FUTURE ENHANCEMENTS

20.1 Support for hierarchical block design in Pipeline Manager

Currently topwrap supports creating hierarchical designs only by manually writing the hierar-
chy in the design description YAML. Supporting such feature in the Pipeline Manager via its
subgraphs would be a huge improvement in terms of organizing complex designs.

20.2 Bus management

Another goal we’d like to achieve is to enable users to create full-featured designs with pro-
cessors by providing proper support for bus management. This should include features such
as:

• ability to specify the address of a peripheral device on the bus

• support for the most popular buses or the ones that we use (AXI, wishbone, Tile-link)

This will require writing or creating bus arbiters (round-robin, crossbar) and providing a mech-
anism for connecting master(s) and slave(s) together. As a result, the user should be able to
create complex SoC with Topwrap.

Currently only experimental support for Wishbone with a round-robin arbiter is available.

20.3 Improve the process of recreating a design from a YAML file

One of the main features that are supported by Topwrap and Pipeline Manager is exporting and
importing user-created design to or from a design description YAML. However, during these
conversions, information about the positions of user-added nodes is not preserved. This is
cumbersome in the case of complicated designs since the imported nodes cannot be placed in
the optimal positions.

Therefore, one of our objectives is to provide a convenient way of creating and restoring user-
created designs in Pipeline Manager, so that the user doesn’t have to worry about node positions
when importing a design to Pipeline Manager.

46

20.4 Support for parsing SystemVerilog sources

Information about IP cores is stored in IP core description YAMLs. These files can be generated
automatically from HDL source files - currently Verilog and VHDL are supported. Our goal is to
provide the possibility of generating such YAMLs from SystemVerilog too.

20.5 Provide a way to parse HDL sources from the Pipeline Manager
level

Another issue related to HDL parsing is that the user has to manually parse HDL sources to
obtain the IP core description YAMLs. Then the files need to be provided as command-line
parameters when launching the Topwrap Pipeline Manager client application. Therefore, we
aim to provide a way of parsing HDL files and including them in the editor directly from the
Pipeline Manager level.

20.6 Ability to produce top-level wrappers in VHDL

Topwrap now uses Amaranth to generate top-level design in Verilog. We would also like to add
the ability to produce such designs in VHDL.

20.7 Library of open-source cores

Currently user has to supply all of the cores used in the design manually or semi-manually
(e.g. through FuseSoC). A repository of open-source cores that could be easily reused in top-
wrap would improve convenience and allow quickly putting together a design from premade
hardware blocks.

20.8 Integrating with other tools

Topwrap can build the design but testing and synthesis rely on the user - they have to automate
this process themselves (e.g. with makefiles). Ideally the user should be able to write scripts that
integrate tools for synthesis, simulation and co-simulation (e.g. with Renode) with topwrap.
Some would come pre-packaged with topwrap (e.g. simulation with verilator, synthesis with
vivado). It should also be possible to invoke these from the Pipeline Manager GUI by using its
ability to add custom buttons and integrated terminal.

Antmicro 47

INDEX

Symbols
__init__() (Config method), 41
__init__() (ConfigManager method), 41
__init__() (ElaboratableWrapper method), 35
__init__() (FuseSocBuilder method), 38
__init__() (IPConnect method), 31
__init__() (IPWrapper method), 28
__init__() (InterfaceDefinition method), 40
__init__() (Wrapper method), 27
__init__() (WrapperPort method), 36
_connect_external_ports() (IPConnect

method), 31
_connect_internal_ports() (IPConnect

method), 31
_connect_to_external_port() (IPConnect

method), 31
_set_interface() (IPConnect method), 32
_set_port() (IPConnect method), 32

A
add_component() (IPConnect method), 32
add_dependency() (FuseSocBuilder method),

38
add_external_ip() (FuseSocBuilder method),

38
add_source() (FuseSocBuilder method), 38
add_sources_dir() (FuseSocBuilder method),

38

B
build() (FuseSocBuilder method), 39

C
check_interface_compliance() (in module

topwrap.interface), 40
Config (class in topwrap.config), 41
ConfigManager (class in topwrap.config), 41
connect_interfaces() (IPConnect method),

32
connect_ports() (IPConnect method), 33

E
ElaboratableWrapper (class in top-

wrap.elaboratable_wrapper), 35

F
FuseSocBuilder (class in topwrap.fuse_helper),

38

G
get_interface_by_name() (in module top-

wrap.interface), 40
get_port_by_name() (Wrapper method), 27
get_ports (Wrapper property), 27
get_ports() (ElaboratableWrapper method),

35
get_ports() (IPConnect method), 33
get_ports() (IPWrapper method), 29
get_ports_hier() (ElaboratableWrapper

method), 35
get_ports_of_interface() (Wrapper

method), 27

I
InterfaceDefinition (class in top-

wrap.interface), 40
IPConnect (class in topwrap.ipconnect), 31
IPWrapper (class in topwrap.ipwrapper), 28

L
like() (WrapperPort static method), 36

M
make_connections() (IPConnect method), 33
make_interconnect_connections() (IPCon-

nect method), 33

S
Schema (Config attribute), 41
Schema (InterfaceDefinition attribute), 40
set_constant() (IPConnect method), 34

48

V
validate_inout_connections() (IPConnect

method), 34

W
Wrapper (class in topwrap.wrapper), 27
WrapperPort (class in top-

wrap.amaranth_helpers), 36

Antmicro 49

	Getting started
	Installation
	Example usage
	Example PWM design
	Example HDMI design

	Description files
	Design Description
	IP description files
	Port widths
	Parameterization
	Port slicing

	Interface Description files

	Interconnect generation
	Format
	Interconnect params
	Wishbone round-robin

	Limitations

	Command-line Interface
	Building design
	Connect Topwrap to Pipeline Manager
	Generating IP core description YAMLs

	Kenning Pipeline Manager
	Run Topwrap with Pipeline Manager
	Pipeline Manager features
	Export design to yaml description file
	Import design from yaml description file
	Design validation
	Building design

	FuseSoC
	Setup
	Code style
	Lint with nox
	Lint with pre-commit
	Tools

	Tests
	Test execution
	Test coverage

	Wrapper
	IPWrapper class
	IPConnect class
	ElaboratableWrapper class
	Wrapper Port
	FuseSocBuilder
	Interface definition
	Config
	Deducing interfaces
	Step 1. - splitting ports into subsets
	Step 2. - matching ports with interface signal names
	Step 3. - inferring interface direction
	Step 4. - computing interface matching score
	Good scoring function

	Examples
	Future enhancements
	Support for hierarchical block design in Pipeline Manager
	Bus management
	Improve the process of recreating a design from a YAML file
	Support for parsing SystemVerilog sources
	Provide a way to parse HDL sources from the Pipeline Manager level
	Ability to produce top-level wrappers in VHDL
	Library of open-source cores
	Integrating with other tools

	Index

