@ antmicro

Analog Devices, Inc.; Antmicro

Zeppelin - Zephyr Al Profiling Library - documentation

2025-08-28

CONTENTS

Introduction 1
Zeppelin project 2
2.1 Initializing the workspace 2
2.2 Running a sample project with Zeppelin 3
2.3 Customizing and using Zeppelin e 4
2.4 Testing Zeppelin e e e e e e e e 6
Zeppelin configuration 7
3.1 Configuringthelibrary 7
3.2 Trace formats v v . e 8
3.3 Tracebackends L e e e e e e e 9
3.4 Profiling tiers e e e e e e e e e e e e e e e 9
3.5 Adding new configurations ittt 10
Memory profiling 12
4.1 MemOTIYLYPES . . v v v v i et e 12
4.2 MemOTY €VENEL . . v v v v v vttt e e e e e e e e e e e e e e e e e e e 12
Tracing code scopes 14
5.1 Markingthecode 14
5.2 Enabling/disabling code scopes at runtime, 15
CTF to TEF conversion 17
6.1 Usage o e e e e e e e e e e e e e e e e e 17
6.2 EVENLS. i e e e e e e e e e e e 18
Zeppelin Trace Viewer 26
7.1 Requirements. o i i it e e e e e e e e e e e e e e e e 26
7.2 Building. e e e e e e e e e 26
7.3 Usage e e e e e e e e e e e e e e 26

CHAPTER
ONE

INTRODUCTION

Zephyr Profiling Library (ZPL), or Zeppelin for short, is a library which enables capturing and
reporting runtime performance metrics, for the profiling and detailed analysis of Zephyr appli-
cations, with a special focus on applications running AI/ML inference workloads.

This documentation describes the following aspects of Zeppelin and the associated projects:

» Zeppelin project - provides general information on Zeppelin repository, describes how to
build, test and use the profiling middleware

» Zeppelin configuration - describes build-time and runtime configuration of Zeppelin library
* Memory profiling - describes memory profiling, along with memory events

* Tracing code scopes - describes the use of tracing code scopes

* CTF to TEF conversion - describes how traces are converted and processed

» Zeppelin Trace Viewer - describes the tool for trace visualization

CHAPTER
TWO

ZEPPELIN PROJECT

Zeppelin is implemented as a West module. The Zeppelin repository consists of the following
elements:

* Zeppelin library

* Custom configurations of boards based on MAX78002 and MAX32690 - for testing pur-
poses

* Sample applications, which also serve as integration tests
* Unit tests

* Patches to Zephyr RTOS

2.1 Initializing the workspace

First, make sure all dependencies required by Zephyr RTOS are installed - follow the Getting
started guide.

Secondly, create a workspace and clone the Zeppelin repository:

mkdir workspace && cd workspace
git clone --recursive git@github.com:antmicro/zeppelin.git
cd zeppelin

Then, install west and additional dependencies listed in project’s requirements. txt with pip:

[pip install -r requirements.txt

Next, initialize the workspace using West. To do that, run the following command:

[west init -1 .

Download, patch and prepare the project sources using the following commands:

west update

west patch apply

west zephyr-export

west packages pip --install

For testing without hardware in the loop, download Renode portable and add the download
path to PATH environment variable:

https://www.zephyrproject.org/
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html

| @antmlcro

wget https://builds.renode.io/renode-latest.linux-portable-dotnet.tar.gz

mkdir renode-portable

tar --strip-components=1 -C ./renode-portable -xvf renode-latest.linux-portable-
—dotnet.tar.gz

export PATH=$(pwd)/renode-portable: $PATH

Finally, download Zephyr SDK:

{west sdk install]

2.2 Running a sample project with Zeppelin

To collect traces and visualize them using Zeppelin Trace Viewer, you can run a simple demo
with gesture recognition, based on the data from an accelerometer in a Renode simulation. The
default configuration in this demo collects traces along with all possibile additional information,
like memory usage, die temperature, inference statistics, and more. One UART provides logs
from the application, whereas the other UART returns CTF traces.

To build the demo, run:

[west build -p -b stm32f746g_disco/stm32f746xx samples/demo

To run it in a Renode simulation, run:

python ./scripts/run_renode.py \
--repl ./samples/demo/boards/stm32f746g_disco_lis2ds12.repl \
--sensor i2c1.lis2ds12 \
--sensor-samples ./samples/common/data/magic_wand/magic_wand.data \
--trace-output trace.ctf \
--timeout 10

This demo will for 10 seconds until a timeout is reached. After this time, CTF traces returned
over secondary UART will be stored in trace.ctf.

O Note

For trace collection on actual hardware, refer to Trace collection.

The trace needs to be converted to the TEF format, so that it can be loaded in Zeppelin Trace
Viewer.

For that purpose, run:

west zpl-prepare-trace ./trace.ctf --tvm-model-path samples/common/tvm/model/
—magic-wand-graph.json -o ./tef_tvm_profiler. json

The part --tvm-model-path is an input argument with the path to a TVM model graph, which
is used to introduce additional model data to the TEF trace file metadata.

To get an overview of the traces, load the output tef_tvm_profiler. json file in Zeppelin Trace
Viewer.

Analog Devices, Inc.; Antmicro 3

https://antmicro.github.io/zeppelin-trace-viewer
https://antmicro.github.io/zeppelin-trace-viewer

| @antmlcro

2.3 Customizing and using Zeppelin

Zeppelin can be enabled by y-selecting the CONFIG_ZPL symbol in the project configuration file.
To initialize Zeppelin in a runtime, use the zpl_init() function defined by the zpl/lib.h
header. You can enable various Zeppelin components by using Kconfig and runtime configu-
ration, as described in following sections.

2.3.1 Configuration
The library can be configured both during building and during a run on a device. To find out
how to configure the library and how to add new configurations, check Zeppelin configuration.

2.3.2 Trace collection

To enable Zeppelin tracing support, the user should enable the symbol CONFIG_ZPL_TRACE in
Kconfig. You can then select one of the following formats:

* Plaintext format, by y-selecting CONFIG_ZPL_TRACE_FORMAT_PLAINTEXT
* Common Trace Format (CTF), by y-selecting CONFIG_ZPL_TRACE_FORMAT_CTF

You can choose how the traces will be delivered to the host PC by selecting one of the available
tracing backends:

* UART, by y-selecting CONFIG_ZPL_TRACE_BACKEND_UART

* USB, by y-selecting CONFIG_ZPL_TRACE_BACKEND_USB

* Debugger, by y-selecting CONFIG_ZPL_TRACE_BACKEND_DEBUGGER

* Renode’s simulated trivial UART, by y-selecting CONFIG_ZPL_TRACE_BACKEND_TRIVIAL_UART

Depending on the tracing backend used, the following commands can be used for trace capture.

UART
* Config option - CONFIG_ZPL_TRACE_BACKEND_UART

e Command:

west zpl-uart-capture [-h] serial_port serial_baudrate output_path

Capture traces using UART. This command capures traces using the serial.
—interface.

positional arguments:

serial_port Seral port
serial_baudrate Seral baudrate
output_path Capture output path
options:
-h, --help show this help message and exit

Analog Devices, Inc.; Antmicro 4

| @antmlcro

USB
* Config option - CONFIG_ZPL_TRACE_BACKEND_USB

e Command:

west zpl-usb-capture [-h] [-t TIMEOUT] [-w] vendor_id product_id output_path
Capture traces using USB. This command capures traces using USB.

positional arguments:

vendor_id Vendor ID
product_id Product ID
output_path Capture output path
options:
-h, --help show this help message and exit

-t, --timeout TIMEOUT
Timeout of the USB capture in seconds
-w, --wait-for-device
When this flag is set, the command will wait for the_
—device to connect

N

Debugger
. Conﬁgtapﬁonn-CONFIG_ZPL_TRACE_BACKEND_DEBUGGER

e Command:

west zpl-gdb-capture [-h] elf_path output_path

Capture traces using GDB. This command captures traces using GDB from RAM.
—using the “dump™ command.

positional arguments:
elf_path Zephyr ELF path
output_path Capture output path

options:
-h, --help show this help message and exit

Trivial UART in Renode

On top of the above, Renode’s simulated trivial UART can be used as well to collect traces in a
simulation: CONFIG_ZPL_TRACE_BACKEND_TRIVIAL_UART.

2.3.3 Adding named events to traces

Zeppelin provides methods for introducing custom named events to traces from the source
code level. To use named events, include the header zpl/lib.h, and use the function
sys_trace_named_event() to generate named events.

Analog Devices, Inc.; Antmicro 5

| %)antmlcro

2.3.4 Memory profiler

To use Zeppelin memory profiler, y-select the CONFIG_ZPL_MEMORY_PROFILING in Kconfig. No
further actions are needed in the application code to generate memory profiling events in the
generated trace. Memory profiling along with memory events are described in Memory profiling.

2.3.5 TLFM events

To use Zeppelin custom events with Tensorflow Lite Micro (TLFM), use the func-
tions zpl_emit_tflm_begin_event() and zpl_emit_tflm_end_event(), provided by zpl/
tflm_events.h.

2.4 Testing Zeppelin

To run unit and integration tests, use the following commands:

west twister -v -p max78002evkit/max78002/m4 -p max32690fthr/max32690/m4 -p gemu_
—cortex_m3 -T samples -T tests

Analog Devices, Inc.; Antmicro 6

CHAPTER
THREE

ZEPPELIN CONFIGURATION

The library can be configured at build-time as well as at runtime.

3.1 Configuring the library
To enable Zeppelin tracing support, enable the symbol CONFIG_ZPL_TRACE in Kconfig.

3.1.1 Build-time configuration

The build-time configuration can only be selected during build-time. The configuration can
either be appended to the conf files:

[CONFIG_ZPL_MEMORY_USAGE_TRACE:y

Or appended to the build command:

west build -b stm32f429i_discl1/stm32f429xx samples/trace/memory_profiling -- -
—DCONFIG_ZPL_MEMORY_USAGE_TRACE=y

3.1.2 Runtime configuration

By default, the runtime configuration is turned off with a Kconfig option
CONFIG_ZPL_RUNTIME_CONFIG_NONE. To turn it on, select one of the following runtime
configuration types:

* CONFIG_ZPL_RUNTIME_CONFIG_UART - UART shell commands
* CONFIG_ZPL_RUNTIME_CONFIG_DEBUG - In-memory debug configuration

UART commands

UART commands runtime configuration can be enabled by selecting
CONFIG_ZPL_RUNTIME_CONFIG_UART Kconfig option. This option enables runtime configu-
ration via shell module with custom configuration commands.

To display the available configs type help:

uart:~$ help

Available commands:
help
mem_usage_trace

Each config can then be either enabled or disabled using the following syntax:

| @antmlcro

<command> enable
<command> disable

For example, the memory usage configuration:

mem_usage_trace enable
mem_usage_trace disable

Debug interface

Debug runtime configuration can be enabled by selecting CONFIG_ZPL_RUNTIME_CONFIG_DEBUG
Kconfig option. You can use the debug configuration either directly from GDB, or using the
zpl-debug-config west command. To use it directly in GDB, make sure to load the ELF file
with debug symbols. Then set the desired config to @ (disable) or 1 (enable):

[set var debug_configs.<config> = <value>

For example, to enable the memory usage tracing:

[set var debug_configs.mem_usage_trace = 1

You can also use the zpl-debug-config west command:

usage: west zpl-debug-config [-h] elf_path config value

Enable/Disable configs in runtime using debug interface. This command can list_
—available configs and enable/disable them.

positional arguments:
elf_path Zephyr ELF path

config Config to set

value Value of the config (enable/disable)
options:

-h, --help show this help message and exit

For example, to enable the memory usage tracing:

[west zpl-debug-config build/zephyr/zephyr.elf mem_usage_trace enable

3.2 Trace formats

The user can then select the following formats:
* Plaintext format, by y-selecting CONFIG_ZPL_TRACE_FORMAT_PLAINTEXT
* Common Trace Format (CTF), by y-selecting CONFIG_ZPL_TRACE_FORMAT_CTF

Analog Devices, Inc.; Antmicro 8

| @antmlcro

3.3 Trace backends

You can choose how the traces will be delivered to the host PC by selecting one of the available
tracing backends:

* UART, by y-selecting CONFIG_ZPL_TRACE_BACKEND_UART

* USB, by y-selecting CONFIG_ZPL_TRACE_BACKEND_USB

* Debugger, by y-selecting CONFIG_ZPL_TRACE_BACKEND_DEBUGGER

* Renode’s simulated trivial UART, by y-selecting CONFIG_ZPL_TRACE_BACKEND_TRIVIAL_UART

Depending on the tracing backend used, the following commands can be used for trace capture.

3.4 Profiling tiers

The library supports three distinct profiling tiers, each offering a different balance of perfor-
mance impact and tracing detail:

* ZPL_TRACE_MINIMAL_MODE - This mode provides extremely lightweight profiling with min-
imal overhead.

— It is designed for environments where performance is critical, and persistent trace
data is not required.

— When enabled, it activates basic inference profiling (ZPL_INFERENCE_PROFILING) and
memory usage tracing (ZPL_MEMORY_USAGE_TRACE) to give a high-level view of system
behavior without introducing measurable latency.

* ZPL_TRACE_LAYER_PROFILING_MODE - This mode enables layer-level timing.
— It offers more granularity by tracking timing at individual model layers.
* ZPL_TRACE_FULL_MODE - This comprehensive profiling mode enables complete tracing.

— This mode is suitable for in-depth debugging and performance analysis but incurs a
higher runtime cost due to its extensive trace capture.

- It includes all basic and layer-level profiling features, and additionally implies a wide
array of kernel and runtime tracing subsystems, which include:

* syscall tracing,

* thread scheduling,

% interrupt service routines (ISRs),

% synchronization primitives (semaphores, mutexes, condition variables),

* IPC mechanisms (queues, FIFOs, LIFOs, stacks, message queues, mailboxes,
pipes),

* memory allocators (heap, memory slabs),

% timers,

* event handling,

* polling,

* power management,

Analog Devices, Inc.; Antmicro 9

| @antmlcro

* networking (core, sockets),

* various hardware interfaces (GPIO, idle state tracking).

3.5 Adding new configurations

Depending on the selected Zeppelin integration, the source files in projects need to be adjusted,
as described in the following subsections.
3.5.1 Build-time configuration

The build-time configurations can be added to the zpl/Kconfig file. The config should follow
the Kconfig standard. For example:

config ZPL_RUNTIME_CONFIG_NONE
bool "No runtime configuration”

3.5.2 Runtime configuration

New runtime configurations can be defined in the configuration source files. To add a new
config, first, using macros, declare two functions in include/zpl/configuration.h:

ZPL_WAIT_FOR_CONF_DEC(config_name)
ZPL_CHECK_IF_CONF_DEC(config_name)

Then, in each configuration type’s source file, define those functions, using the same name, and
its corresponding Kconfig option. For example in the configuration_uart.c file:

[ZPL_CONF_UART_DEF (config_name, kconfig_option) }

In the code, there are two ways to use the runtime configuration as guards for the functionali-
ties.

Wait-for function

The “wait-for” function stops the thread, and waits for a signal. Once the signal arrives, the
thread is woken up, and continues execution. This is useful when the functionality which this
configuration guards is in a separate thread. This wait-for functionality can be called using the
macro ZPL_WAIT_FOR_CONF. Example:

while (true) {
ZPL_WAIT_FOR_CONF (mem_usage_trace);
// ... Guarded code

Check-if function

The “check-if” functionality doesn’t stop the thread, and only checks if the configuration is
turned on. The function returns a boolean value, which can be checked in a standard “if”,
to create a guard for the functionality. The check-if function can be called using the macro
ZPL_CHECK_IF_CONF. Example:

Analog Devices, Inc.; Antmicro 10

| %)antmlcro

if (ZPL_CHECK_IF_CONF(mem_usage_trace)) {
// ... Guarded code
3

Analog Devices, Inc.; Antmicro 11

CHAPTER
FOUR

MEMORY PROFILING

The memory profiling functionality allows tracing of different memory regions. To use it, enable
CONFIG_ZPL_MEMORY_PROFILING in the Kconfig.

4.1 Memory types

The profiling tool currently supports the following memory regions in Zephyr:
* Stack
¢ Heaps
* k heaps
* Memory Slabs

4.2 Memory event

The memory tracing tool uses custom events. Those events contain information about the
memory regions at a point in time.

4.2.1 Common Trace Format
The memory event is a packed structure, described below. It contains information about:
* timestamp - the timestamp at which the event occurred
* id - id of the event defined as 0xEE
* memory_region - the profiled memory region (stack, heap, etc.)
* memory_addr - memory address, which serves as memory region identifier
* used, unused - Used and unused number of bytes

* for_thread_id - ID of the thread associated with the memory region or 0 otherwise

typedef struct __packed {
uint32_t timestamp;
uint8_t id;
enum zpl_memory_region memory_region;
uintptr_t memory_addr;
uint32_t used;
uint32_t unused;
(continues on next page)

12

https://docs.zephyrproject.org/latest/kernel/services/data_passing/stacks.html
https://docs.zephyrproject.org/latest/kernel/memory_management/heap.html
https://docs.zephyrproject.org/latest/kernel/memory_management/heap.html
https://docs.zephyrproject.org/latest/kernel/memory_management/slabs.html

| %)antmlcro

(continued from previous page)

uint32_t for_thread_id;
} zpl_memory_event_t;

The available memory regions are defined as an enum:

enum zpl_memory_region {
ZPL_STACK = 0,
ZPL_HEAP,
ZPL_K_HEAP,
ZPL_MEM_SLAB,

3

4.2.2 Plaintext

When using a CONFIG_ZPL_TRACE_FORMAT_PLAINTEXT format, the memory events are printed
in plaintext. The events contain the same information as in the CTF format, but in human
readable form. The example shown below, contains a series of memory events of different
memory regions.

* zpl_memory_event - event name

* stack, heap, etc. - memory region

0x20011748 - memory address

80B 432B - used and unused memory size (in order)

536936848 - thread ID

zpl_memory_event stack (0x20011748) 80B 432B 536936848
zpl_memory_event stack (0x20011348) 48B 976B 536936848
zpl_memory_event stack (0x20012148) 48B 272B 536937024
zpl_memory_event stack (0x20012288) 280B 744B 536937200
zpl_memory_event heap (0x20010048) 28B 164B 0
zpl_memory_event heap (0x2001005c) 12B 940B 0
zpl_memory_event heap (0x200106ac) 0B 47132B 0
zpl_memory_event k_heap (0x20010048) 28B 164B 0
zpl_memory_event k_heap (0x2001005c) 12B 940B 0
zpl_memory_event mem_slab (0x2001002c) 256B 7936B @

Analog Devices, Inc.; Antmicro 13

CHAPTER
FIVE

TRACING CODE SCOPES

Zeppelin allows marking certain code scopes for tracing. When the program execution enters
an enabled scope, an event is emitted before and after the code is executed. The scopes can be
enabled and disabled at both build-time and runtime.

5.1 Marking the code

5.1.1 Defining the scopes
To use the scopes in your code, first define the scopes using the macro ZPL_CODE_SCOPE_DEFINE.

// ZPL_CODE_SCOPE_DEFINE(name, is_enabled);
ZPL_CODE_SCOPE_DEFINE (code_scope_name_1, false);
ZPL_CODE_SCOPE_DEFINE (code_scope_name_2, true);

The first parameter is the code scope name, which will be used as a handle for marking the code
scopes. The second parameter, the flag is_enabled, describes the initial state of the scope. The
scope can be enabled or disabled at boot, but it can always be switched at runtime.

5.1.2 Marking the code using ZPL_MARK_CODE_SCOPE

To mark the desired code scopes, Zeppelin provides a special macro. The scope event will be
emitted before and after the code inside is executed. The macro takes in one parameter, which
is the name of the scope defined earlier using the macro ZPL_CODE_SCOPE_DEFINE.

ZPL_MARK_CODE_SCOPE (code_scope_name) {
// ... Code inside the code scope

b

5.1.3 Marking the code using functions

Alternatively, you can mark the scopes using the enter/exit functions. Those functions work
exactly the same as the macro showcased above.

zpl_code_scope_enter(code_scope_name) ;
// ... Code inside the code scope
zpl_code_scope_exit(code_scope_name);

This method allows for the entry and exit to be defined in separate contexts. For example, you
can mark the beginning of a scope in one function, and the ending in a different function.

14

| ;%)antmlcro

void start_function(void)

{
zpl_code_scope_enter (code_scope_name);
// Function body

}

void end_function(void)

{
// Function body
zpl_code_scope_exit(code_scope_name);

}

5.1.4 Example

In the example below, two scopes are created. Both methods (macro and function) are show-
cased. Marking the code scopes using both methods results in the same behavior.

#include <zpl/lib.h>

ZPL_CODE_SCOPE_DEFINE (code_scopel, false);
ZPL_CODE_SCOPE_DEFINE (code_scope2, true);

int main(void)

{
zpl_init();

ZPL_MARK_CODE_SCOPE (code_scopel) {
// ... Code inside code_scopel

3
zpl_code_scope_enter(code_scope2);
// ... Code inside code_scope?2

zpl_code_scope_exit(code_scope2);

return 0;

5.2 Enabling/disabling code scopes at runtime

Code scopes can be enabled and disabled at runtime. This can be done in two ways: via UART
shell, or by changing the scope’s state in memory.
5.2.1 UART runtime configuration

To use the UART runtime configuration, enable the Kconfig option
CONFIG_ZPL_RUNTIME_CONFIG_UART.

To list the available configs and their current state, use the command dynamic_conf list:

Analog Devices, Inc.; Antmicro 15

| @antmlcro

uart:~$ dynamic_conf list

Available configs:
code_scopel: disabled
code_scope2: disabled
code_scope3: enabled
code_scope4: enabled

J

To change the state of the scope use dynamic_conf enable <scope> to enable and dynamic_conf
disable <scope> to disable the scopes:

uart:~$ dynamic_conf enable code_scopel
uart:~$ dynamic_conf disable code_scope4

5.2.2 Debug runtime configuration

Code scopes can also be enabled directly in the memory, for example by using GDB. If the binary
was build with debug symbols, then in GDB you can access them by name.

To check the state of a code scope, in GDB enter:

>>> print code_scopel.is_enabled
$1 = false

To change the state of a scope:

>>> set var code_scope2.is_enabled=0

>>> set var code_scopel.is_enabled=1 }

Analog Devices, Inc.; Antmicro 16

CHAPTER
SIX

CTF TO TEF CONVERSION

In order to expand the compatibility of the traces received in Common Trace Format (CTF), we
created a converter for obtaining them in the Trace Event Format (TEF).

6.1

Usage

You can run the converter with the following command:

west zpl-prepare-trace \
[-h] -o OUTPUT [--zephyr-base ZEPHYR_BASE] [--build-dir BUILD_DIR] \
[--tflm-model-path TFLM_MODEL_PATH] [--tvm-model-path TVM_MODEL_PATH] \
ctf_trace

There are several optional arguments available:

--zephyr-base - the script tries to automatically find the Zephyr directory in order to use
the metadata file definition of CTF events. If this fails, you have to provide the path or set
the ZEPHYR_BASE environmental variable.

--build-dir - the directory storing the results of the build and ram report.

--tflm-model-path - the provided TFLite Micro model is processed to extract information
about its layer and tensors, and the information is converted to MODEL Metadata event.

--tvm-model-path - the provided microTVM graph JSON file is processed to extract in-
formation about model’s layer and tensors, and the information is converted to MODEL
Metadata Event,

-o - the file path which points to the file where the converted trace should be saved. If not
provided, the JSON will be printed to STDOUT.

Apart from changing the format, this involves a custom logic which can group elements into
Duration events, and extend their arguments (see Converted events). Completely new events can
be added to the trace, extending the context, and improving the trace visualization capabilities
(see Additional events). Furthermore, the command also converts timestamps from nanoseconds
(used in CTF) to microseconds, which are valid for Zeppelin Trace Viewer and Speedscope (it
assumes that the timestamps are provided in such unit).

17

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://docs.zephyrproject.org/latest/develop/optimizations/tools.html#build-target-ram-report
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.nso4gcezn7n1

1 ;%)antmlcro

6.2 Events

6.2.1 Converted events

This section describes events that are converted from CTF events, emitted during Zeppelin
runtime. Based on those, the trace viewer produces dedicated panels with visualizations (e.g.
plot panels).

Zephyr events

For default Zephyr events (defined in metadata), the beginning event always gets the _enter
suffix, whereas the ending event gets the _exit suffix. These events are marked as B and E
events, creating Duration event in TEF. The remaining Zephyr events are of Instant type, but
since Speedscope does not support displaying such events, they are also converted to a Duration
Event with 1 microsecond of duration.

© Example events
{
"name": "isr”,
"cat": "zephyr",
"ph": "B",
"ts": 99967.43400000001,
"pid": 0,
"tid": 0
P
{
"name": "isr”,
"cat": "zephyr",
"ph": "E",
"ts": 99980.142,
"pid": 0,
"tid": 0
}

zpl_inference

The Duration event marking the beginning and end of model’s inference. It is created from the
CTF events zpl_inference_enter and zpl_inference_exit.

© 2zpl_inference events examples
{

"name"”: "zpl_inference”,

"cat": "zephyr",

"ph": "B",

"ts": 0.0,

"pid": 0,

"tid": 536912424,

"args": {

Analog Devices, Inc.; Antmicro 18

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/tracing/ctf/tsdl/metadata
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.nso4gcezn7n1
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.lenwiilchoxp
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.nso4gcezn7n1

| ;%)antmlcro

"thread_id": 536912424

b

n n

"name": "zpl_inference”,
"cat": "zephyr",
"ph": "E",
"ts": 110497.391,
"pid”: 0,
"tid": 536912424,
"args": {
"thread_id"”: 536912424

MODEL : : {LAYER_OP}[_{ SUBGRAPH_IDX}]_{OP_IDX}
The MODEL : : x Duration event is unique to each layer of a model, described with:
* LAYER_OP - a tag of operation like CONV_2D or MAX_POOL_2D,

* SUBGRAPH_IDX - an optional number representing the ID of a subgraph to which a given
layer belongs,

* OP_IDX - a number representing the ID of the operation in a subgraph.
The event contains:

* identifiers like op_idx and optional subgraph_idx,

* tag with the layer name,

* thread_id pointing to the thread that executed this layer,

* runtime specifying which runtime was used, and

* additional runtime-specific data.

This event is converted from TFLite micro (zpl_tflm_(enter|exit)) and microTVM
(zpl_tvm_(enter|exit)) events.

© MODEL: : x events examples

{
"name”: "MODEL::CONV_2D_0_0",

"CGt"Z “ZGphyr“,

"ph": "B",
"ts": 4294973.212,
"pid": 0,
"tid": 536912424,
"args": {

"thread_id": 536912424,
"subgraph_idx": 0,
"op_idx": 0,

Analog Devices, Inc.; Antmicro 19

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.nso4gcezn7n1

1 ;%)antmlcro

"tag": "CONV_2D",
"arena_used_bytes": 15408,
"arena_tail_usage": 88,
"runtime”: "TFLite Micro”

"name"”: "MODEL::CONV_2D_0_0",
ncatn: “Zephyr“ ,

"ph": "E",
"ts": 4359202.146,
"pid": 0,
"tid": 536912424,
"args": {

"thread_id": 536912424,
"subgraph_idx": 0,
"op_idx": 0,

"tag": "CONV_2D",
"arena_used_bytes": 15408,
"arena_tail_usage"”: 88,
"runtime”: "TFLite Micro”

MEMORY

The Metadata event with information about a memory region for a given timestamp (ts). It is
created from the CTF event zpl_memory.

p
© MEMORY metadata example

{
"name": "MEMORY",

"cat”: "zephyr",

"ph": "M",

"ts": 55.216,

"pid": o,

"tid": 536937200,

"args": {
"memory_region”: "STACK",
"memory_addr”: 536950376,
"used”: 88,
"unused”: 424,
"for_thread_id": 536936848

Analog Devices, Inc.; Antmicro 20

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f

1 ;%)antmlcro

CPU_LOAD

The Metadata event defining CPU load (cpu_load field) for a given timestamp (ts). It is con-
verted from the CTF event zpl_cpu_load_event.

© CPU_LOAD metadata example
{
"name": "CPU_LOAD",
"cat": "zephyr",
"ph": "M",
"ts": 200044.308,
"pid”: 0,
"tid": 0,
"args": {
"cpu_load": 534
3
} J
J
DIE_TEMP

The Metadata event providing DIE temperatures (die_temp array with at most two measure-
ments, in degrees Celsius) for a given timestamp (ts). It is converted from the CTF event
zpl_die_temp_event.

© DIE_TEMP metadata example
{

"name": "DIE_TEMP",

"cat": "zephyr"”,

"ph": "M",

"ts": 300327.025,

"pid”: 0,

"tid": 0,

"args": {

"die_temp": [
21.947092056274414,
41.94709014892578

]

}
\} J

6.2.2 Additional events

This section contains events that are not produced during the Zeppelin runtime, but are used to
provide additional information for better visualizations.

Analog Devices, Inc.; Antmicro 21

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f

1 ;%)antmlcro

MEMORY : : STATICALLY_ASSIGNED_MEM

The Metadata event informing about the part of RAM (in bytes), used by the compiled objects.
This value is calculated using size from ram report and subtracting sizes of the memory regions
(from MEMORY events). The event looks like this:

© MEMORY: : STATICALLY_ASSIGNED_MEM metadata example

{
"name"”: "MEMORY::STATICALLY_ASSIGNED_MEM",

"Cat": “Zephyr“,

"ph": "M",
"pid”: 0,
"tid": o,
"ts": 0,
"args": 14105

MEMORY : : SYMBOLS

The Metadata event contains the mapping of memory region addresses to their symbols ex-
tracted from zephyr.elf. It is used to present human-readable description of the regions, e.g.
making it easier to trace back to the source code. Example event:

© MEMORY: : SYMBOLS metadata example

r 3

{

"name"”: "MEMORY::SYMBOLS",
"cat": "zephyr",

"ph": "M",
"pid”: 0,
"tid": o,
"ts": 0,

"args": {

"536950376": "_k_thread_stack_zpl_mem_profiling”,
"536949352": "tracing_thread_stack”,

"536952936": "z_idle_stacks”,

"536953256": "z_main_stack”,

"536938172": "z_malloc_heap”,

"536936540": "_system_heap”,

"536936560": "test_k_heap”,

"536936512": "test_mem_slab”

Analog Devices, Inc.; Antmicro 22

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f
https://docs.zephyrproject.org/latest/develop/optimizations/tools.html#build-target-ram-report
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f

| @antmlcro

thread_name

The Metadata event is used by Speedscope to associate a thread ID with a name. Apart from
describing which thread is shown on the flamegraph, the thread name is also used to provide
human-readable label for the thread stack.

One event describes exactly one thread with arguments containing the thread name, assigned
to the key name.

© thread_name metadata example

{
"name": "thread_name",
"cat": "zephyr",
"ph": "M",
"pid”: 0,
"tid": 536912424,
"args": {
"name”: "main”
}
} J
MODEL

The MODEL Metadata event contains following information:
* inputs - the specification of model inputs, described with name, shape and dtype,
* outputs - the specification of model outputs, with the same properties as inputs,

* tensors - the specification of internal data like inputs and outputs of layers, their weights
or biases; the properties are the same as inputs, but with additional index and optional
subgraph_idx,

* ops - the specification of model operations:

— op_name - the mname of the operation (e.g. CONV_2D or
tvmgen_default_fused_nn_conv2d_add_nn_relu),

— index - the ID of the operation,

— inputs and outputs - lists with indices pointing to tensors with input and output
data (respectively),

— inputs_types and outputs_types - the operation’s input and output data types,

— inputs_shapes and outputs_shapes - the operation’s input and output shapes.

© Example event of Magic Wand model for TFLite Micro runtime

{
"name": "MODEL",

"Cat": llzephyrll,
"ph": IIMH’
"pid": @,

Analog Devices, Inc.; Antmicro 23

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.xqopa5m0e28f

1 ;%)antmlcro

"tid": o,
"ts": 0,
"args": {
"inputs”: [
{
"name": "input_1",
"name_long": "serving_default_input_1:0",
"shape”: [1, 128, 3, 11,
"shape_signature”: [-1, 128, 3, 1],
"dtype”: "float32",
"quantization”: [0.0, 0],
"quantization_parameters”: {
"scales”: [],
"zero_points": [],
"quantized_dimension”: 0
}
}
1,
"outputs”: [
{
"name"”: "out_layer”,
"name_long": "StatefulPartitionedCall: 0",
"shape”: [1, 4],
"shape_signature”: [-1, 4],
"dtype": "float32",
"quantization”: [0.0, 0],
"quantization_parameters”: {
"scales”: [],
"zero_points": [],
"quantized_dimension”: 0
}
}
1,
"tensors"”: [
{
"name"”: "serving_default_input_1:0",
"subgraph_idx": 0,
"index": 0,
"shape": [1, 128, 3, 11,
"shape_signature”: [-1, 128, 3, 1],
"dtype”: "float32",
"quantization"”: [0.0, 0],
"quantization_parameters”: {
"scales”: [],
"zero_points": [],
"quantized_dimension”: 0
}
s

n n

1,

Analog Devices, Inc.; Antmicro

24

| ;%)antmlcro

nopsn . I:

"op_name"”: "CONV_2D",
"index": 0,
"inputs”: [0, 3, 1],
"outputs”: [10],
"inputs_types”: ["float32”, "float32", "float32"],
"outputs_types”: ["float32"],
"inputs_shapes”: {

"o": [1, 128, 3, 11,

"3": [8, 4, 3, 1],

"1": [8]
s
"outputs_shapes": {

"10": [1, 128, 3, 8]
}

o

n n

Analog Devices, Inc.; Antmicro 25

CHAPTER
SEVEN

ZEPPELIN TRACE VIEWER

Zeppelin Trace Viewer is a visual interface for traces in Trace Event Format (TEF). To fully utilize
the features of the viewer, we suggest processing traces with the CTF converter.

Go to the GitHub-hosted Zeppelin Trace Viewer to begin analyzing traces.

7.1 Requirements

The viewer leverages workspaces to manage third-party dependencies like Speedscope. This
requires yarn in version 1.x or newer, provided by corepack (usually installed together with
Node.js):

Allows to use package managers without having to install them
corepack enable

Downloads specified version of yarn and all dependencies

yarn

7.2 Building

There are several predefined commands with basic utilities:
* yarn build - Builds for production, emitting to dist/
* yarn preview - Starts a server at http://localhost: 4173/ to test production build locally
* yarn dev - Starts a dev server at http://localhost:5173/

* yarn lint - Lints a code and applies all applicable fixes

7.3 Usage

The viewer is built around Speedscope - an interactive flamegraph viewer with support for many
trace/profiling formats.

To display a trace, simply import a TEF file using the File/Import trace (or Browse) button (Fig.
7.1). This action will change the internal state of Speedscope, which triggers the reaction of
Additional info section. It gathers metadata and initializes custom panels based on available
data.

26

https://antmicro.github.io/zeppelin-trace-viewer
https://yarnpkg.com/
https://github.com/nodejs/corepack#readme
https://github.com/jlfwong/speedscope

| @antmlcro

Zeppelin Trace Viewer

To convert CTF
west zpl-prepare-tra

Additional Info

Fig. 7.1: The main page of Trace viewer

7.3.1 Model info panel

The model info panel displays details about the selected event and the corresponding layer.
Currently, it supports TFLite Micro (Fig. 7.2)

and microTVM runtime (Fig. 7.3).

7.3.2 Plot panels

The trace viewer can also visualize resource usage (like memory or CPU load) or data from
sensors (such as DIE temperature) using plots (Fig. 7.4).

Panels with these plots are automatically created whenever a trace with necessary data is
loaded:

* MEMORY events for memory plots,
* CPU LOAD events for CPU load plot,
* DIE TEMP events for DIE temperature plot.

Analog Devices, Inc.; Antmicro 27

| @antmlcro

File

Flamegraph
® Tine order ® L.

. |[mopEL

ALl Instances
Total selr

128.530s | 128.5%ns

Additional Info

Param

8] of fleat32

equential/conv2d/R 0 d sAd ti d equential/col

Fig. 7.2: The TFLite micro model information example

Analog Devices, Inc.; Antmicro 28

| @antmlcro

File

Flamegraph
® Tine order ® L.

MODEL

ALl Instances
Total selr

230.28ns | 230.28ns

Additional Info

Layer info

vmgen_default_f

Inputs:
put: [1

_default_fused_nn_conv2d_add_nn_relu: [1, 12

Fig. 7.3: The microTVM model information example

Analog Devices, Inc.; Antmicro 29

| @antmlcro

File

Flamegraph
® Tine order ®

AUl Instances
Total self

Le= | Lsss

sequential
Outpuf
sequen

Zeppelin Trace Viewer

Memory usage

RAM overview Percel

CPU Load DIE temperature

i |
‘\“.||W“|u||||u||lh\\A A A

oad

‘HM\H'"“T‘ 50 "\ \|\‘\‘\‘\|
|\ ‘I\I ‘l|‘ Hl V|‘ H' H‘ H‘ H‘ \‘ H‘

h

ﬁ

Timestamp [ms Timestamp [ms]

Fig. 7.4: The memory usage example

Analog Devices, Inc.; Antmicro 30

	Introduction
	Zeppelin project
	Initializing the workspace
	Running a sample project with Zeppelin
	Customizing and using Zeppelin
	Configuration
	Trace collection
	UART
	USB
	Debugger
	Trivial UART in Renode

	Adding named events to traces
	Memory profiler
	TLFM events

	Testing Zeppelin

	Zeppelin configuration
	Configuring the library
	Build-time configuration
	Runtime configuration
	UART commands
	Debug interface

	Trace formats
	Trace backends
	Profiling tiers
	Adding new configurations
	Build-time configuration
	Runtime configuration
	Wait-for function
	Check-if function

	Memory profiling
	Memory types
	Memory event
	Common Trace Format
	Plaintext

	Tracing code scopes
	Marking the code
	Defining the scopes
	Marking the code using ZPL_MARK_CODE_SCOPE
	Marking the code using functions
	Example

	Enabling/disabling code scopes at runtime
	UART runtime configuration
	Debug runtime configuration

	CTF to TEF conversion
	Usage
	Events
	Converted events
	Zephyr events
	zpl_inference
	MODEL::{LAYER_OP}[_{SUBGRAPH_IDX}]_{OP_IDX}
	MEMORY
	CPU_LOAD
	DIE_TEMP

	Additional events
	MEMORY::STATICALLY_ASSIGNED_MEM
	MEMORY::SYMBOLS
	thread_name
	MODEL

	Zeppelin Trace Viewer
	Requirements
	Building
	Usage
	Model info panel
	Plot panels

