Defining optimization pipelines in Kenning

Kenning blocks (specified in the Kenning API) can be configured either via command line (see Using Kenning via command line arguments), or via configuration files, specified in JSON format. The latter approach allows the user to create more advanced and easy-to-reproduce scenarios for model deployment. Most notably, various optimizers available through Kenning can be chained to utilize various optimizations and get better performing models.

One of the scenarios most commonly used in Kenning is model optimization and compilation. It can be done using kenning.scenarios.inference_tester.

To run below examples it is required to install Kenning with dependencies as follows:

pip install "kenning[tensorflow,tflite,tvm] @ git+https://github.com/antmicro/kenning.git"

JSON specification

The kenning.scenarios.inference_tester takes the specification of optimization and the testing flow in a JSON format. The root element of the JSON file is a dictionary that can have the following keys:

  • model_wrapper - mandatory field, accepts dictionary as a value that defines the ModelWrapper object for the deployed model (provides I/O processing, optionally model).

  • dataset - mandatory field, accepts dictionary as a value that defines the Dataset object for model optimization and evaluation.

  • optimizers - optional field, accepts a list of dictionaries specifying the sequence of Optimizer-based optimizations applied to the model.

  • protocol - optional field, defines the Protocol object used to communicate with a remote target platform.

  • runtime - optional field (required when optimizers are provided), defines the Runtime-based object that will infer the model on target device.

Each dictionary in the fields above consists of:

Model evaluation using its native framework

The simplest JSON configuration looks as follows:

Listing 1 mobilenetv2-tensorflow-native.json
{
  "model_wrapper": {
    "type": "kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMobileNetV2",
    "parameters": {
      "model_name": "native",
      "model_path": "kenning:///models/classification/tensorflow_pet_dataset_mobilenetv2.h5"
    }
  },
  "dataset": {
    "type": "kenning.datasets.pet_dataset.PetDataset",
    "parameters": {
      "dataset_root": "./build/PetDataset"
    }
  }
}

It only takes model_wrapper and dataset. This way, the model will be loaded and evaluated using its native framework.

The ModelWrapper used is TensorFlowPetDatasetMobileNetV2, which is a MobileNetV2 model trained to classify 37 breeds of cats and dogs. In the type field, we specify the full “path” to the class by specifying the module it is implemented in (kenning.modelwrappers.classification.tensorflow_pet_dataset) and the name of the class (TensorFlowPetDatasetMobileNetV2) in a Python-like format (dot-separated).

In parameters, arguments specific to TensorFlowPetDatasetMobileNetV2 are provided. The following parameters are available based on the argument specification:

# this argument structure is taken from kenning.core.model - it is inherited by child classes
arguments_structure = {
    'modelpath': {
        'argparse_name': '--model-path',
        'description': 'Path to the model',
        'type': Path,
        'required': True
    }
}

The only mandatory parameter here is model_path, which points to a file containing the model. It is a required argument.

The dataset used here, is PetDataset. Like previously, it is provided in a module-like format (kenning.datasets.pet_dataset.PetDataset). The parameters here are specified in kenning.core.dataset.Dataset (inherited) and kenning.core.dataset.PetDataset:

arguments_structure = {
    # coming from kenning.core.dataset.Dataset
    'root': {
        'argparse_name': '--dataset-root',
        'description': 'Path to the dataset directory',
        'type': Path,
        'required': True
    },
    'batch_size': {
        'argparse_name': '--inference-batch-size',
        'description': 'The batch size for providing the input data',
        'type': int,
        'default': 1
    },
    'download_dataset': {
        'description': 'Downloads the dataset before taking any action',
        'type': bool,
        'default': False
    },
    # coming from kenning.datasets.pet_dataset.PetDataset
    'classify_by': {
        'argparse_name': '--classify-by',
        'description': 'Determines if classification should be performed by species or by breeds',
        'default': 'breeds',
        'enum': ['species', 'breeds']
    },
    'image_memory_layout': {
        'argparse_name': '--image-memory-layout',
        'description': 'Determines if images should be delivered in NHWC or NCHW format',
        'default': 'NHWC',
        'enum': ['NHWC', 'NCHW']
    }
}

As visible, the parameters allow the user to:

  • specify the dataset’s location,

  • download the dataset,

  • configure data layout and batch size,

  • configure anything specific to the dataset.

Note

For more details on defining parameters for Kenning core classes, check Defining arguments for core classes.

If optimizers or runtime are not specified, the model is executed using the ModelWrapper‘s run_inference method. The dataset test data is passed through the model and evaluation metrics are collected.

To run the defined pipeline (assuming that the JSON file is under pipeline.json), run:

kenning test \
    --json-cfg mobilenetv2-tensorflow-native.json \
    --measurements measurements.json \
    --verbosity INFO

The measurements.json file is the output of the kenning.scenarios.inference_tester providing measurement data. It contains information such as:

  • the JSON configuration defined above,

  • versions of core class packages used (e.g. tensorflow, torch, tvm),

  • available resource usage readings (CPU usage, GPU usage, memory usage),

  • data necessary for evaluation, such as predictions, confusion matrix, etc.

This information can be later used for Generating performance reports.

Note

Check Kenning measurements for more information.

Optimizing and running a model on a single device

Model optimization and deployment can be performed directly on target device, if the device is able to perform the optimization steps. It can also be used to check the outcome of certain optimizations on a desktop platform before deployment.

Optimizations and compilers used in a scenario are defined in the optimizers field. This field accepts a list of optimizers - they are applied to the model in the same order in which they are defined in the optimizers field.

For example, a model can be subjected to the following optimizations:

  • Quantization of weights and activations using TensorFlow Lite.

  • Conversion of data layout from NHWC to NCHW format using Apache TVM

  • Compilation to x86 runtime with AVX2 vector extensions using Apache TVM.

Such case will result is the following scenario:

Listing 2 mobilenetv2-tensorflow-tvm-avx-int8.json
{
  "model_wrapper": {
    "type": "kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMobileNetV2",
    "parameters": {
      "model_name": "tvm-avx2-int8",
      "model_path": "kenning:///models/classification/tensorflow_pet_dataset_mobilenetv2.h5"
    }
  },
  "dataset": {
    "type": "kenning.datasets.pet_dataset.PetDataset",
    "parameters": {
      "dataset_root": "./build/PetDataset"
    }
  },
  "optimizers": [
    {
      "type": "kenning.optimizers.tflite.TFLiteCompiler",
      "parameters": {
        "target": "int8",
        "compiled_model_path": "./build/int8.tflite",
        "inference_input_type": "int8",
        "inference_output_type": "int8"
      }
    },
    {
      "type": "kenning.optimizers.tvm.TVMCompiler",
      "parameters": {
        "target": "llvm -mcpu=core-avx2",
        "opt_level": 3,
        "conv2d_data_layout": "NCHW",
        "compiled_model_path": "./build/int8_tvm.tar"
      }
    }
  ],
  "runtime": {
    "type": "kenning.runtimes.tvm.TVMRuntime",
    "parameters": {
      "save_model_path": "./build/int8_tvm.tar"
    }
  }
}

As emphasized above, the optimizers list is added, with two entries:

  • a kenning.optimizers.tflite.TFLiteCompiler type block, quantizing the model,

  • a kenning.optimizers.tvm.TVMCompiler type block, performing remaining optimization steps.

In the runtime field, a TVM-specific kenning.runtimes.tvm.TVMRuntime type is used.

The first optimizer on the list reads the input model path from the ModelWrapper‘s model_path field. Each consecutive Optimizer reads the model from a file saved by the previous Optimizer. In the simplest scenario, the model is saved to compiled_model_path in each optimizer, and is fetched by the next Optimizer.

In case the default output file type of the previous Optimizer is not supported by the next Optimizer, the first common supported model format is determined and used to pass the model between optimizers.

In case no such format exists, the kenning.scenarios.inference_tester returns an error.

Note

More details on input/output formats between Optimizer objects can be found in Developing Kenning blocks.

The scenario can be executed as follows:

kenning optimize test --json-cfg mobilenetv2-tensorflow-tvm-avx-int8.json --measurements output.json

Compiling a model and running it remotely

For some platforms, we cannot run a Python script to evaluate or run the model to check its quality - the dataset is too large to fit in the storage, no libraries or compilation tools are available for the target platform, or the device does not have an operating system to run Python on.

In such cases, it is possible to evaluate the system remotely using the Protocol and the kenning.scenarios.inference_server scenario.

For this use case, we need two JSON files - one for inference server configuration, and another one for the kenning.scenarios.inference_tester configuration, which acts as a runtime client.

The client and the server may communicate via different means, protocols and interfaces - we can use TCP communication, UART communication or other. It depends on the Protocol used.

In addition, in such scenario optimizers can be executed either on host (which is default behavior) or on target device. To specify it, you can use location parameter of the Optimizer.

To create client/server scenario configuration it is required to add a protocol entry:

Listing 3 tflite-tvm-classification-client-server.json
{
    "model_wrapper":
    {
        "type": "kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMobileNetV2",
        "parameters":
        {
            "model_path": "kenning:///models/classification/tensorflow_pet_dataset_mobilenetv2.h5"
        }
    },
    "dataset":
    {
        "type": "kenning.datasets.pet_dataset.PetDataset",
        "parameters":
        {
            "dataset_root": "./build/PetDataset"
        }
    },
    "optimizers":
    [
        {
            "type": "kenning.optimizers.tflite.TFLiteCompiler",
            "parameters":
            {
                "target": "default",
                "compiled_model_path": "./build/compiled_tflite.tflite",
                "inference_input_type": "float32",
                "inference_output_type": "float32"
            }
        },
        {
            "type": "kenning.optimizers.tvm.TVMCompiler",
            "parameters":
            {
                "target": "llvm -mcpu=core-avx2",
                "compiled_model_path": "./build/compiled_tvm.tar",
                "opt_level": 3,
                "location": "target"
            }
        }
    ],
    "runtime":
    {
        "type": "kenning.runtimes.tvm.TVMRuntime",
        "parameters":
        {
            "save_model_path": "./build/compiled_model.tar"
        }
    },
    "protocol":
    {
        "type": "kenning.protocols.network.NetworkProtocol",
        "parameters":
        {
            "host": "127.0.0.1",
            "port": 12345,
            "packet_size": 32768
        }
    }
}

In the protocol entry, we specify a kenning.protocols.network.NetworkProtocol and provide a server address (host), an application port (port) and packet size (packet_size)

The server parses only runtime and protocol from the configuration, so any changes to the other of the blocks does not require server restart. The server uses protocol to receive requests from clients and runtime to run the tested models.

The remaining things are provided by the client - input data and model. Direct outputs from the model are sent as is to the client, so it can postprocess them and evaluate the model using the dataset. The server also sends measurements from its sensors in JSON format as long as it is able to collect and send them.

First, run the server, so that it is available for the client:

kenning server \
    --json-cfg tflite-tvm-classification-client-server.json \
    --verbosity INFO &

Then, run the client:

kenning optimize test \
    --json-cfg tflite-tvm-classification-client-server.json \
    --measurements ./build/tflite-tvm-classification.json \
    --verbosity INFO

The rest of the flow is automated.

To execute one of the optimizers on the target-side, simply add the location parameter as follows:

"optimizers":
[
    {
        "type": "kenning.optimizers.tflite.TFLiteCompiler",
        "parameters":
        {
            "target": "int8",
            "compiled_model_path": "./build/int8.tflite",
            "inference_input_type": "int8",
            "inference_output_type": "int8"
        }
    },
    {
        "type": "kenning.optimizers.tvm.TVMCompiler",
        "parameters": {
            "target": "llvm -mcpu=core-avx2",
            "opt_level": 3,
            "conv2d_data_layout": "NCHW",
            "compiled_model_path": "./build/int8_tvm.tar",
            "location": "target"
        }
    }
],

and start the client the same as above (it is not required to restart server).


Last update: 2024-12-06