Sample AutoML report

This section contains a sample AutoML report generated during CI.

The CI is set up as follows:

AutoML statistics

  • Optimized metric: f1

  • The number of generated models: 43

  • The number of trained and evaluated models: 30

  • The number of successful training processes: 37

  • The number of models that caused a crash: 2

  • The number of models that failed due to the timeout: 1

  • The number of models that failed due to the too large size: 3

  • The number of models that failed due to incompatibility: 0

Training overview

Bokeh Plot

Figure 12 Loss value during AutoML training process

Bokeh Plot

Figure 13 Comparison of loss value across models

Summary of generated models

Bokeh Plot

Figure 14 Metrics of models trained by AutoML flow

Table 5 Summary of generated models’ parameters

Model ID

Number of layers

Optimized model size [KB]

Total parameters

Trainable parameters

3

7

15.5546875

2815

2814

4

10

49.73046875

11623

11622

5

17

33.08203125

7498

7497

6

21

33.4921875

7613

7612

7

27

61.02734375

14094

14093

8

14

50.16015625

11841

11840

9

21

35.60546875

7834

7833

10

17

37.4296875

8732

8731

11

23

54.3359375

11691

11690

12

21

30.37890625

7656

7655

13

17

33.13671875

7799

7798

14

12

37.5625

8227

8226

15

10

42.421875

10264

10263

16

13

45.5546875

10455

10454

17

8

19.8671875

4364

4363

18

27

47.5078125

10720

10719

19

25

49.37109375

13209

13208

20

19

45.875

10707

10706

21

12

44.40234375

10171

10170

22

14

58.640625

14009

14008

23

9

27.69921875

6301

6300

24

10

24.9453125

5151

5150

25

9

50.67578125

12130

12129

26

25

51.265625

11652

11651

27

11

30.75390625

8095

8094

28

10

36.19140625

8007

8006

29

21

24.62890625

4788

4787

30

23

30.2890625

6668

6667

31

13

26.79296875

6005

6004

32

19

41.4453125

8872

8871

33

19

42.16015625

9754

9753

34

15

31.8359375

6497

6496

35

11

42.99609375

9219

9218

36

13

20.0625

4112

4111

37

15

31.16796875

6868

6867

38

17

9512

9511

Classification comparison

Comparison of inference time, F1 score and model size

Bokeh Plot

Figure 15 Model size, speed and quality summary. The F1 score of the model is presented on Y axis. The inference time of the model is presented on X axis. The size of the model is represented by the size of its point.

Table 6 Comparison of model inference time, accuracy and size

Model name

Mean Inference time [s]

Size [MB]

F1 score

workspace.automl-results.1234_3_5.0.measurements.json

0.000426

0.016

0.250000

workspace.automl-results.1234_12_5.0.measurements.json

0.000853

0.032

0.250000

workspace.automl-results.1234_19_1.6666666666666665.measurements.json

0.004035

0.052

0.352941

workspace.automl-results.1234_19_5.0.measurements.json

0.004034

0.052

0.352941

workspace.automl-results.1234_31_5.0.measurements.json

0.000748

0.028

0.250000

Detailed metrics comparison

Bokeh Plot

Figure 16 Radar chart representing the accuracy, precision and recall for models

Table 7 Summary of classification metrics for models

Model name

Accuracy

Mean precision

Mean sensitivity

G-mean

ROC AUC

F1 score

workspace.automl-results.1234_3_5.0.measurements.json

0.952000

0.729675

0.579132

0.406529

0.579132

0.250000

workspace.automl-results.1234_12_5.0.measurements.json

0.952000

0.729675

0.579132

0.406529

0.579132

0.250000

workspace.automl-results.1234_19_1.6666666666666665.measurements.json

0.956000

0.781633

0.620798

0.497895

0.620798

0.352941

workspace.automl-results.1234_19_5.0.measurements.json

0.956000

0.781633

0.620798

0.497895

0.620798

0.352941

workspace.automl-results.1234_31_5.0.measurements.json

0.952000

0.729675

0.579132

0.406529

0.579132

0.250000

Inference comparison

Performance metrics

Bokeh Application

Figure 17 Plot represents changes of inference time over time for all models.

Table 8 Summary of inference time metrics for models

Model name

Standard deviation [s]

Minimum [s]

Maximum [s]

Median [s]

Mean [s]

workspace.automl-results.1234_3_5.0.measurements.json

0.000029

0.000381

0.000516

0.000413

0.000426

workspace.automl-results.1234_12_5.0.measurements.json

0.000030

0.000811

0.000929

0.000840

0.000853

workspace.automl-results.1234_19_1.6666666666666665.measurements.json

0.000180

0.003648

0.004534

0.004027

0.004035

workspace.automl-results.1234_19_5.0.measurements.json

0.000178

0.003640

0.004549

0.004036

0.004034

workspace.automl-results.1234_31_5.0.measurements.json

0.000030

0.000689

0.000846

0.000736

0.000748

Mean comparison plots

Bokeh Plot

Figure 18 Violin chart representing distribution of values for performance metrics for models

Table 9 Performance metric for models

Model name

Inference time [s]

workspace.automl-results.1234_3_5.0.measurements.json

0.000426

workspace.automl-results.1234_12_5.0.measurements.json

0.000853

workspace.automl-results.1234_19_1.6666666666666665.measurements.json

0.004035

workspace.automl-results.1234_19_5.0.measurements.json

0.004034

workspace.automl-results.1234_31_5.0.measurements.json

0.000748


Last update: 2026-01-30