Sample AutoML report

This section contains a sample AutoML report generated during CI.

The CI is set up as follows:

AutoML statistics

  • Optimized metric: f1

  • The number of generated models: 48

  • The number of trained and evaluated models: 31

  • The number of successful training processes: 39

  • The number of models that caused a crash: 0

  • The number of models that failed due to the timeout: 1

  • The number of models that failed due to the too large size: 8

  • The number of models that failed due to incompatibility: 0

Training overview

Bokeh Plot

Figure 12 Loss value during AutoML training process

Bokeh Plot

Figure 13 Comparison of loss value across models

Summary of generated models

Bokeh Plot

Figure 14 Metrics of models trained by AutoML flow

Table 5 Summary of generated models’ parameters

Model ID

Number of layers

Optimized model size [KB]

Total parameters

Trainable parameters

3

7

17.8515625

2815

2814

4

10

56.0625

11623

11622

5

17

36.93359375

7498

7497

6

21

37.2578125

7613

7612

7

27

64.43359375

14094

14093

8

14

57.20703125

11841

11840

9

21

40.7578125

7834

7833

10

17

41.953125

8732

8731

11

23

57.3125

11691

11690

12

21

37.65234375

7656

7655

13

17

37.7734375

7799

7798

14

12

41.64453125

8227

8226

15

10

45.86328125

10264

10263

16

13

48.98828125

10455

10454

17

8

22.78515625

4364

4363

18

27

50.55078125

10720

10719

19

13

29.05859375

5596

5595

20

25

37.98046875

7352

7351

21

13

37.41796875

7850

7849

22

13

44.48828125

9072

9071

23

14

50.4609375

10981

10980

24

27

40.328125

8374

8373

25

11

22.15625

3781

3780

26

13

20.4375

3701

3700

27

21

34.546875

6551

6550

28

19

61.23046875

13954

13953

29

13

52.6328125

11737

11736

30

10

36.63671875

7190

7189

31

11

61.73046875

12885

12884

32

17

37.41015625

7738

7737

33

8

47.0703125

10540

10539

34

10

33.56640625

6402

6401

35

19

49.11328125

9859

9858

36

15

28.00390625

5337

5336

37

10

29.0390625

5245

5244

38

8

29.05859375

5444

5443

39

10

30.578125

5748

5747

40

17

56.97265625

12815

12814

41

12

47.671875

9095

9094

42

9

6448

6447

Classification comparison

Comparison of inference time, F1 score and model size

Bokeh Plot

Figure 15 Model size, speed and quality summary. The F1 score of the model is presented on Y axis. The inference time of the model is presented on X axis. The size of the model is represented by the size of its point.

Table 6 Comparison of model inference time, accuracy and size

Model name

Mean Inference time [s]

Size [MB]

F1 score

workspace.automl-results.1234_3_5.0.measurements.json

0.000556

0.018

0.250000

workspace.automl-results.1234_12_5.0.measurements.json

0.001246

0.040

0.250000

workspace.automl-results.1234_27_5.0.measurements.json

0.001236

0.036

0.352941

workspace.automl-results.1234_30_1.6666666666666665.measurements.json

0.002890

0.038

0.000000

workspace.automl-results.1234_30_5.0.measurements.json

0.002889

0.038

0.000000

Detailed metrics comparison

Bokeh Plot

Figure 16 Radar chart representing the accuracy, precision and recall for models

Table 7 Summary of classification metrics for models

Model name

Accuracy

Mean precision

Mean sensitivity

G-mean

ROC AUC

F1 score

workspace.automl-results.1234_3_5.0.measurements.json

0.952000

0.729675

0.579132

0.406529

0.579132

0.250000

workspace.automl-results.1234_12_5.0.measurements.json

0.952000

0.729675

0.579132

0.406529

0.579132

0.250000

workspace.automl-results.1234_27_5.0.measurements.json

0.956000

0.781633

0.620798

0.497895

0.620798

0.352941

workspace.automl-results.1234_30_1.6666666666666665.measurements.json

0.952000

0.476000

0.500000

0.000000

0.500000

0.000000

workspace.automl-results.1234_30_5.0.measurements.json

0.952000

0.476000

0.500000

0.000000

0.500000

0.000000

Inference comparison

Performance metrics

Bokeh Application

Figure 17 Plot represents changes of inference time over time for all models.

Table 8 Summary of inference time metrics for models

Model name

Mean [s]

Median [s]

Minimum [s]

Standard deviation [s]

Maximum [s]

workspace.automl-results.1234_3_5.0.measurements.json

0.000556

0.000550

0.000525

0.000022

0.000666

workspace.automl-results.1234_12_5.0.measurements.json

0.001246

0.001240

0.001206

0.000021

0.001341

workspace.automl-results.1234_27_5.0.measurements.json

0.001236

0.001235

0.001187

0.000021

0.001323

workspace.automl-results.1234_30_1.6666666666666665.measurements.json

0.002890

0.002884

0.002478

0.000153

0.003290

workspace.automl-results.1234_30_5.0.measurements.json

0.002889

0.002890

0.002455

0.000153

0.003298

Mean comparison plots

Bokeh Plot

Figure 18 Violin chart representing distribution of values for performance metrics for models

Table 9 Performance metric for models

Model name

Inference time [s]

workspace.automl-results.1234_3_5.0.measurements.json

0.000556

workspace.automl-results.1234_12_5.0.measurements.json

0.001246

workspace.automl-results.1234_27_5.0.measurements.json

0.001236

workspace.automl-results.1234_30_1.6666666666666665.measurements.json

0.002890

workspace.automl-results.1234_30_5.0.measurements.json

0.002889


Last update: 2025-12-19